

GEOTECHNICAL DESIGN REPORT REPLACEMENT OF I-95 BRIDGES OVER WEBB ROAD MAINEDOT WIN 21900.01, BRIDGE NO. 5813 AND MAINEDOT WIN 21894.01, BRIDGE NO. 1461 WATERVILLE, MAINE

by Haley & Aldrich, Inc. Portland, Maine

for McFarland Johnson Freeport, Maine

File No. 132212-004/005 March 2022

HALEY & ALDRICH, INC. 75 Washington Avenue Suite 1A Portland, ME 04101 207.482.4600

17 March 2022 File No. 132212-004

McFarland Johnson 5 Depot Street, Suite 25 Freeport, Maine 04032

Attention: Theresa McAuliffe, P.E.

Transportation Manager

Subject: Geotechnical Design Report

Replacement of I-95 Bridges over Webb Road MaineDOT WIN 21900.01, Bridge No. 5813 and MaineDOT WIN 21894.01, Bridge No. 1461

Waterville, Maine

Ladies and Gentlemen:

We are pleased to submit our report entitled, "Geotechnical Design Report, Replacement of I-95 Bridges over Webb Road, MaineDOT WIN 21900.01 Bridge No. 5813 and MaineDOT WIN 21894.01 Bridge No. 1461, Waterville, Maine." This Geotechnical Design Report (GDR) has been prepared in accordance with our agreement with McFarland Johnson, dated 28 September 2021, and authorized by James M. Festa, P.E.

Introduction

This GDR presents the results of preliminary design phase (Phase I) and final design phase (Phase II) subsurface exploration and laboratory testing programs, technical evaluations, and geotechnical design recommendations for the subject project. This scope has been completed by Haley & Aldrich, Inc. (Haley & Aldrich) on behalf of McFarland Johnson for the proposed replacement of the I-95 bridges over Webb Road in Waterville, Maine (see Figure 1, Project Locus).

HORIZONTAL COORDINATE SYSTEM, ELEVATION DATUM, AND BASELINE STATIONING

Plan locations of test borings are reported as northing and easting coordinates relative to the Maine State Plane Coordinate System, North American Datum of 1983 (NAD 83), Maine 2000 West Zone. Asdrilled test boring locations were related to station and offset distance/direction relative to the I-95 northbound (NB), southbound (SB), and NB diversion baseline stationing by Haley & Aldrich. The project elevation datum and elevations referenced herein are in feet (ft) and reference the North American Vertical Datum of 1988 (NAVD 88).

PROJECT LOCATION AND EXISTING SITE CONDITIONS

The existing bridges carry I-95 NB and SB traffic on two separate bridges over Webb Road in Waterville, Maine. The existing site conditions adjacent to Webb Road and I-95 consist of a predominantly vegetated highway median with the two-lane Webb Road crossing from approximately west to east beneath I-95. Based on our review of historic bridge plans dated 1958, we understand that the existing bridges each consist of three approximately 43-ft-long and 40-ft-wide spans. The existing bridge abutments are supported on concrete pile caps supported on steel H-piles, and the middle piers are supported on concrete spread footings bearing on soil.

PROPOSED BRIDGE STRUCTURES

The proposed single-span, two-lane bridges will carry I-95 over Webb Road along the same alignment as the existing bridges, as shown on Figure 2, Site and Subsurface Exploration Location Plan (on-line replacement). Bridge No. 5813 will carry I-95 NB and Bridge No. 1461 will carry I-95 SB. The proposed bridge structures will include full-height abutments adjacent to Webb Road. The total width and length of the bridges are planned to be 44.3 ft and 56 ft, respectively. Proposed finished roadway grades along the new approaches and bridge will approximately match current existing I-95 grades. Proposed finished roadway grades along Webb Road beneath the bridges will approximately match existing roadway grades.

A temporary roadway is planned to be constructed in the existing median between I-95 NB and I-95 SB, as shown on Figures 2 and 3 (Site and Subsurface Exploration Location Plans). This temporary roadway will carry I-95 NB traffic during the replacement of the existing I-95 NB bridge. After completion of the I-95 NB bridge, the temporary roadway will carry I-95 SB traffic during replacement of the existing I-95 SB bridge. It is our understanding that Webb Road will be closed during construction, and approximately 6 to 7 ft of temporary fill will be placed to construct the temporary roadway across Webb Road. A temporary bridge structure will not be required.

Geologic Setting

Based on Maine Geological Survey's Surficial Geology of the Waterville Quadrangle, Maine (2011) and soil samples observed in recent explorations, surficial deposits mapped at the site consist of artificial fill, marine deposits, glacial till and weathered bedrock.

Artificial fill was encountered in the recent explorations within the limits of the existing Webb Road and the existing highway embankments. The fill typically consisted of sand with varying amounts of gravel and trace silt. This material was placed during original construction of I-95.

Marine deposits were encountered beneath the man-placed fill in the recent explorations at the site. The marine deposits primarily consisted of soft/medium-dense to very stiff/dense silt and sand with varying amounts of gravel.

Glacial till deposits were encountered beneath the man-placed fill and/or marine unit in the recent explorations at the site. This glacial till unit primarily consisted of very stiff to hard silt with varying amounts of sand and gravel with minor deposits of very dense well-graded sand and gravel with varying amounts of silt.

According to Bedrock Geology of Maine (1985), bedrock within the site is primarily mapped as interbedded pelite, limestone, and sandstone of the Sangerville and Waterville Formations. The Sangerville and Waterville Formations are Silurian in age. Rock core samples collected from the recent explorations at the site consisted of phyllite with moderate to steeply dipping beds and intermittent calcite and quartz veins.

Subsurface Explorations

HISTORIC EXPLORATIONS BY OTHERS

A limited amount of subsurface information for the existing bridges is available and is shown on the historic drawings included in Appendix D.

PHASE I EXPLORATIONS BY HALEY & ALDRICH

Haley & Aldrich completed a Phase I subsurface exploration program in association with the subject project consisting of four test borings, designated BB-WWR-101 through BB-WWR-104, that were drilled at the site from 11 to 13 June 2018. Borings BB-WWR-101 and BB-WWR-102 were drilled for the I-95 NB bridge. Borings BB-WWR-103 and BB-WWR-104 were drilled for the I-95 SB bridge. The purpose of the subsurface exploration program was to characterize the general subsurface conditions along the proposed bridge alignment and in the vicinity of the proposed bridge substructures.

Boring locations were laid out in the field by Haley & Aldrich by taping from existing site features. Asdrilled test boring locations and ground surface elevations at the test boring locations were determined in the field by MaineDOT using global positioning system (GPS) survey equipment upon drilling completion. The as-drilled station/offset distance and direction relative to the proposed baseline were determined by Haley & Aldrich. Location data for the explorations are summarized in Table I and the locations are shown graphically on Figure 2.

The test borings were drilled by New England Boring Contractors (NEBC) of Hermon, Maine using a Mobile B53 track-mounted drill rig. Test borings were advanced to depths ranging from approximately 25 to 42 ft below ground surface (BGS) using cased-washed drilling methods and 4-in. (HW-size) inside diameter (ID) steel casings. Soil samples were generally collected continuously and/or at standard, 5-ft intervals, by driving a 1-3/8-in. ID split spoon sampler with a 140-lb hammer dropped from a height of 30 in., as indicated on the test boring logs. The number of hammer blows required to advance the sampler through each 6-in. interval was recorded and is provided on the logs. The uncorrected SPT N-value (N-uncorrected) is defined as the total number of blows required to advance the sampler through the middle 12 in. of the 24-in. sampling interval.

The drill rig was equipped with a calibrated automatic hammer. Based on the calibration information provided by NEBC, a theoretical hammer efficiency factor of 0.677 was used for the automatic hammer. The energy-corrected SPT N-value (N₆₀) is equal to the uncorrected SPT N-value multiplied by the hammer efficiency factor (0.677) divided by 0.6 (i.e., 60% calculated hammer efficiency). Both the raw blow count (uncorrected N-values) and the corrected N-values are shown on the boring logs.

Test borings were advanced approximately 10 to 16.5 ft into bedrock using a 2-in. ID (NQ-size), diamond-tipped core barrel.

Soil and bedrock samples were collected and preserved in glass jars and wooden boxes, respectively. The samples that were not submitted for laboratory testing are available for review upon request, and are currently being stored at the Haley & Aldrich laboratory facility in Portland, Maine.

Observation wells were installed in two of the completed boreholes (i.e., BB-WWR-102 and BB-WWR-104) to provide information on the static groundwater levels at the site. The observation wells consisted of 2-in. ID machine-slotted polyvinyl chloride (PVC) pipe and solid PVC riser pipe extending to approximately 3 ft above the existing ground surface. The observation well was outfitted with a steel riser pipe with a locking steel cover. The observation well installation and groundwater monitoring reports are provided in Appendix B.

All Phase I drilling and sampling activities were performed in accordance with MaineDOT requirements.

PHASE II EXPLORATIONS BY HALEY & ALDRICH

Haley & Aldrich completed a Phase II subsurface exploration program at the site from 6 to 14 October 2021. The final design subsurface investigation consisted of eleven test borings, designated BB-WWR-201 through BB-WWR-210 and BB-WWR-208A.

Boring locations were laid out in the field by Haley & Aldrich using GPS survey equipment prior to the start of drilling. "As-drilled" test boring locations and ground surface elevations were determined in the field by MaineDOT using GPS survey equipment upon the completion of drilling and were provided to Haley & Aldrich. Location data for the explorations are summarized in Table I and are shown graphically on Figures 2 and 3.

The borings were drilled by NEBC of Hermon, Maine using a Mobile Drill B-53 track-mounted drill rig. Test borings were advanced to depths ranging from approximately 6.9 to 26.7 ft BGS using similar means and methods to those used to drill the Phase I test borings. The hammer efficiency factor for the automatic hammer used was 0.867 (86.7 percent theoretical hammer efficiency) as shown on the test boring logs.

Test borings BB-WWR-201 through BB-WWR-204 were advanced approximately 10 ft into bedrock using a 2.0-in. (NQ-size), diamond-tipped core barrel.

Soil and bedrock samples were collected and preserved in glass jars and wooden boxes, respectively. The soil and bedrock samples that were not submitted for laboratory testing are currently being stored at the Haley & Aldrich laboratory facility in Portland, Maine and are available for review upon request.

All drilling and sampling activities were performed in accordance with MaineDOT requirements.

Generalized Subsurface Conditions

The subsurface conditions encountered at the site during the recent subsurface exploration programs completed by Haley & Aldrich generally consist of the following geologic units presented in order of increasing depth BGS: topsoil, man-placed fill, marine deposits, glacial till, weathered bedrock, and bedrock. Refer to Table II for a summary of the soil units and encountered thicknesses in each test boring. A general description of each soil/bedrock unit is provided separately below. Detailed soil and bedrock descriptions are provided on the test boring logs included in Appendix A. Refer to Figures 4 through 7 (Interpretive Subsurface Profiles) for a graphical representation of the subsurface conditions present along the proposed bridge and temporary roadway alignments.

Please note that soil descriptions provided on the test boring logs do not represent actual field conditions other than at the specific test boring locations. The actual conditions encountered between boring locations may vary from those described herein and shown in Table II.

SOIL CONDITIONS

Unit	Approximate Range in Encountered	Generalized Description
Offic	Thickness (ft)	Generalizeu Description
Topsoil/Fill	0.3 to 4.0	Brown, dry to wet, very loose fine SAND (SP-SM) with varying amounts of silt; loose fine to coarse SAND (SW-SM, SW) with varying amounts of gravel and silt; loose Silty fine to medium SAND (SM) with varying amounts of silt and gravel; very soft to stiff SILT (ML) with varying amounts of sand and gravel; and/or stiff Sandy SILT (ML) with varying amounts of gravel. Contains roots.
		(encountered in all borings except BB-WWR-209; diversion boring in I-95 median)
Marine Deposit	1.9 to 16.3	Brown to grey, dry to wet, soft to hard SILT (ML) with varying amounts of sand and gravel; stiff Clayey SILT (ML) trace fine sand partings; mediumdense Silty fine to coarse SAND (SM) with varying amounts of gravel. (encountered in all borings except BB-WWR-104; northwest of the SB bridge)
Glacial Till	4.8 to 20.3	Brown to grey, moist to wet, very stiff to hard SILT (ML) with varying amounts of sand and gravel; hard Sandy SILT (ML) with varying amounts of sand and gravel; medium-dense to very dense SAND (SM) with varying amounts of silt and gravel; dense to very dense Silty SAND (SM) with varying amounts of gravel; medium-dense to dense fine to coarse GRAVEL (GM, GW, GP-GM) with varying amounts of silt and sand. (encountered in all borings)
Weathered Bedrock	0.2 to 5.2	Grey, weathered rock fragments and/or gravel. (encountered in borings BB-WWR-101, BB-WWR-102, BB-WWR-104, BB-WWR-202, and BB-WWR-207)

BEDROCK CONDITIONS

As stated previously, approximately 10 to 16.5 ft of bedrock was cored in each of the bridge test borings (rock coring was not conducted in the diversion borings). The sampled and recovered bedrock generally consisted of the following:

• Grey, aphanitic, PHYLLITE, hard, fresh to slightly weathered, discontinuities dipping at horizontal to vertical angles (0 to 90 degrees from horizontal axis), spacing very close to wide (<2 in. to 24 to 80 in.), discontinuity apertures are tight to open, discontinuity surfaces have calcite, quartz, and pyrite mineralization on some joint surfaces.

Rock quality designation (RQD) is a common parameter that is used to help assess the competency of sampled bedrock. RQD is defined as the sum of pieces of recovered bedrock greater than 4 in. in length divided by the total length of the bedrock core run. As shown on the adjacent figure, there were four core runs with RQD values of zero in the upper 8 ft of the rock. The remaining core runs had RQD values that ranged from 40 to 97 percent, indicating poor to excellent rock quality, with an average of 71 percent.

GROUNDWATER CONDITIONS

As discussed previously, an observation well was installed in the completed boreholes BB-WWR-102 (northwest of the NB bridge) and BB-WWR-104 (northwest of the SB bridge). The observation wells were installed to provide information on the static groundwater levels at the site. The measured water levels during the period 12 June 2018 to 11 November 2021 ranged from approximately 2.4 to 7.5 ft BGS (elevation [El.] 231.7 to El. 226.6) at the NB bridge and approximately 2.6 to 7.0 ft BGS (El. 238.8 to El. 234.4) at the SB bridge.

In general, water levels may fluctuate with season, precipitation, local soil/bedrock conditions, and excavation means and methods. Therefore, water levels may vary from those summarized above, provided on the testing boring logs included in Appendix A, and shown on the groundwater monitoring reports included in Appendix B.

Laboratory Test Results

A geotechnical laboratory testing program was undertaken by Haley & Aldrich on representative soil and rock samples collected during the preliminary design (Phase I) and final design (Phase II) subsurface exploration programs to aid in soil classification and to determine the physical and strength properties of the soil and rock at the site. All laboratory testing was performed in accordance with applicable American Society for Testing Materials (ASTM) testing procedures by GeoTesting Express, Inc. (GTX) of Acton, Massachusetts. A summary of the lab testing results is provided below.

Laboratory Test	ASTM Test Designation	Unit	No. of Tests	Range in Test Results ¹
		Fill	4	AASHTO Classification: A-1-b (0), A-4 (0) USCS Classification: ML, SW-SM, SM
Grain Size of Soil (Sieve only)	ASTM D422	Marine Deposit	9	AASHTO Classification: A-1-b (0), A-2-4 (0), A-4 (0) USCS Classification: SP, ML, SP-SM
		Glacial Till	5	AASHTO Classification: A-1-b (0), A-4 (0) USCS Classification: ML, GM
Compressive Strength and Elastic Moduli of Rock	ASTM D7012 Method D	Bedrock	2	Peak Compressive Stress: 5,970 to 7,387 psi Young's Modulus: 2,890,000 to 55,300,000 psi Poisson's Ratio 0.12 to 0.21

¹ AASHTO = American Association of State Highway and Transportation Officials; psi = pounds per square in.; USCS = Unified Soil Classification System

All laboratory test results are shown on the test boring logs included in Appendix A with complete results provided in Appendix C.

Geotechnical Evaluations and Design Recommendations

Geotechnical design recommendations for the subject project, as discussed and provided herein, were developed in accordance with the following documents:

- AASHTO Load and Resistance Factor Design (LRFD) Bridge Design Specifications, Ninth Edition,
 2020, referred to herein as AASHTO LRFD; and
- MaineDOT Bridge Design Guide (BDG), August 2003, with Interim Revisions through June 2018, referred to herein as Bridge Design Guide.

Engineering calculations that support the recommendations outlined in this report are provided for reference in Appendix E.

APPROACH EMBANKMENTS

The proposed finished grades of I-95 at the bridge approaches will approximately match existing grades. Because of the limited amount of raise in grade and based on the subsurface conditions encountered in the Phase I and Phase II test borings drilled at the site, we anticipate that post-construction settlement of the new approach roadways will be negligible.

SEISMIC SITE CLASS AND DESIGN PARAMETERS

Site class was determined in accordance with AASHTO LRFD Section 3.10.3.1 using Method B. In instances where SPT N-values were equal to 0 (i.e., weight of rod or weight of hammer), were in excess of 100 blows per foot (bpf) or where bedrock was present, default values of 1, 100, and 100 bpf were used, respectively.

Based on the nature and thickness of the overburden soils and depth to bedrock at the site as determined from the test borings, we recommend the site be considered "Site Class D." Spectral accelerations were determined based on the geographic site location and the recommended "Site Class D" designation using the United States Geological Survey (USGS) software application Seismic Design Parameters version 2.0, which is based on a seismic event having a 7 percent probability of exceedance in 75 years (approximate 1,000-year return period). The recommended values are summarized below.

Design Parameter	Design Value
Site factor for short-period range of acceleration response spectrum, Fa =	1.600
Site factor for long-period range of acceleration response spectrum, F_{ν} =	2.400
Site factor at zero-period on acceleration response spectrum, F _{pga} =	1.600
Horizontal response spectral acceleration coefficient at 0.2-s period on rock, $S_S(g) = 0$	0.161
Horizontal response spectral acceleration coefficient at 1.0-s period on rock, $S_1(g) =$	0.046
Peak seismic ground acceleration coefficient on rock, PGA (g) =	0.077
Horizontal response spectral acceleration coefficient at 0.2-s period modified by F_a , S_{DS} (g) =	0.257
Horizontal response spectral acceleration coefficient at 1.0-s period modified by F_v , $S_{D1}(g) =$	0.111
Peak seismic ground acceleration coefficient modified by F_{pga} , As (g) =	0.123

In accordance with AASHTO LRFD Section 3.10.6, the site falls within Seismic Zone 1 based on the calculated value of S_{D1} (i.e., $S_{D1} < 0.15$).

Based on our review of the soil conditions encountered in the test borings and the laboratory testing results, it is our opinion that the overall potential for saturated granular soils present at the site to liquefy during the design earthquake event is low.

BRIDGE ABUTMENT AND WINGWALL FOUNDATION SUPPORT

As shown on the interpretive subsurface profiles (Figures 4 through 7), the subsurface conditions primarily consist of, in order of increasing depth BGS: topsoil, man-placed fill, marine deposits, glacial till, weathered bedrock, and bedrock. The weathered bedrock, glacial till, and bedrock are considered suitable for support of the bridge superstructures. Based on the depth to suitable bearing strata, the subsurface data available, and the proposed bridge geometry, we consider spread footings bearing on glacial till to be the most feasible foundation support option. It is our understanding that the existing

bridge pier spread footings, bearing on glacial till, will be incorporated into a continuous, unreinforced concrete pad ("subfooting") that the new abutment footings will be placed onto.

We recommend that the abutments and wingwalls be supported on mass concrete footings founded on undisturbed glacial till. We understand the proposed bottom of subfootings will be at El. 218.3 for Abutments 1 and 2 for the I-95 NB bridge, and El. 226.8 and El. 226.0 for Abutments 1 and 2 respectively for the I-95 SB bridge. Based on the conditions encountered in the test borings, we anticipate that the soil present at these elevations will be glacial till. Please note that the available subsurface information indicates that the interface elevation between glacial till, weathered bedrock and bedrock is variable.

Foundation design recommendations, based on footing dimensions of 28.6-ft by 54-ft as scaled from draft plans provided by McFarland Johnson, are provided below.

Bearing resistance:

- For the service limit state, mass concrete footings should be designed such that footing contact pressures do not exceed 16.0 kips per square foot (ksf). At this pressure, it is estimated that settlement of footings bearing on glacial till or weathered bedrock will be less than 1 in. per LRFD Article 10.6.2.6.1. This presumptive bearing resistance is based on Table C10.6.2.6.1-1 of AASHTO LRFD.
- For the strength limit state, footings should be designed for a factored bearing resistance of 21.1 ksf, using a resistance factor of 0.45. Bearing resistances for additional footing sizes are shown in Appendix E.
- For the extreme event limit state, footings should be designed for a factored bearing resistance of 37.4 ksf, using a resistance factor of 0.8.

Bearing Distribution and Eccentricity:

- Application of permanent and transient loads is specified in AASHTO LRFD Section 11.5.6. We recommend the stress distribution at the base of the footing be assumed to be a triangular or trapezoidal distribution over the effective footing base as shown in AASHTO LRFD Figure 11.6.3.2-2.
- The eccentricity of loading at the Strength Limit State, based on factored loads, should not exceed one-third of the spread footing dimensions in either direction. This eccentricity corresponds to the resultant of reaction forces falling within the middle two-thirds of the base width and length.

Sliding Resistance:

 In accordance with AASHTO LRFD Tables C3.11.5.3-1 and 10.5.5.2.2-1, we recommend that sliding resistance of abutment and wingwall footings be calculated using the design parameters presented below.

Subgrade Saturation Condition During Construction	Coefficient of Friction (tan δ)	Interface Friction Angle (δ, deg.)	Strength Limit State Resistance Factor for Sliding (φ _τ)	Service/Extreme Limit State Resistance Factor for Sliding (φ _τ)
Prepared in-the-dry	0.45	24	0.8	1.0

Lateral passive soil resistance in front of the footings, if present, should be neglected in accordance with requirements of the BDG. Although not typically included, lateral resistance due to passive earth pressures in front of the subfootings may be used for subfooting design only. This was discussed with both McFarland Johnson and the Department during design, and it was agreed that use of lateral passive resistance for the subfootings was acceptable. The passive resistance should start 6 ft below the Webb Road final grade and use the Rankine lateral earth pressure coefficient presented below.

Substructure	Passive Lateral Earth Pressure Coefficients (K _p , dim.)			
Substructure	Rankine	Coulomb		
Subfootings	3.00	7.33		

ABUTMENT AND WINGWALL DESIGN

Drainage:

The abutment and wingwall design should include a drainage system to intercept any
groundwater and direct it to a suitable discharge point that does not adversely affect
the performance of the abutment and wingwall spread footings. We recommend that
drainage be provided in accordance with BDG Section 5.4.2.13.

Lateral Earth Pressures:

- Recommendations summarized in the table below are based on the following:
 - Abutments and wingwalls are backfilled with a free-draining material (i.e., Soil Type 4, BDG Table 3-3; total unit weight = 125 pounds per cubic foot (pcf); internal angle of friction = 32 degrees).
 - The abutment and wingwall backwalls are vertical.
 - Adequate drainage is provided, as recommended herein and in accordance with the requirements of the BDG, to eliminate the potential for unbalanced hydrostatic pressures to develop.

• A 0 degree backfill surface (i.e., horizontal) at Abutment 1 and 2 breastwalls.

Substructure	Active Late Pressure C (K _a , d	oefficient	At-Rest Lateral Earth Pressure	
Substructure	Rankine	Coulomb	Coefficient (K _o)	
Abutment Breastwalls	0.31	0.27	0.47	

- The Coulomb active earth pressure coefficients apply to wall designs that are "gravity-shaped" or short-heeled, cantilever-types where the top of the stem wall interferes with the shear zone. For long-heeled cantilever-type walls, we recommend the use of Rankine active earth pressure coefficients.
- In accordance with BDG Section 5.4.3, semi-integral abutments should be designed for Rankine active earth pressures over the rigid abutment height and a uniform pressure distribution due to the height of soil behind the superstructure/end diaphragm. We recommend that the superstructure backwall (end diaphragm) be designed for full passive pressure only.
- Additional lateral earth pressures due to live load surcharge are required in accordance with BDG Section 3.6.8 for abutments if an approach slab is not included. If an approach slab is not included, we recommend that the live load surcharge be estimated as a uniform horizontal earth pressure due to an equivalent height of soil that is related to the abutment and wingwall heights, as presented to BDG Table 3-4. When an approach slab is specified, reduction, not elimination of the surcharge load is permitted in accordance with AASHTO LRFD Section 3.11.6.5.

FROST PROTECTION

The minimum depth of embedment/cover for footings or other below-grade structures was evaluated in accordance with Section 5.2.1 of the MaineDOT BDG. Based on the site's design freezing index of 1,660 freezing degree-days, we recommend that the footings and walls bear a minimum of 6.0 ft below the lowest adjacent ground surface exposed to freezing. Refer to Appendix E for supporting documentation.

GLOBAL STABILITY

Computer-assisted, two-dimensional global stability evaluations were performed using the computer program Slide2 by Rocscience Inc. to evaluate global stability of the bridge approach embankments. Evaluations were performed perpendicular to the face of NB Abutment 2 (longitudinal to the bridge) and at two cross-sections perpendicular to the NB Abutment 2 East Wingwall (transverse to the bridge baseline). Based on the geometry and subsurface conditions present at the site, the locations of these

stability evaluations were considered to be representative of the proposed bridge structures for the project.

Soil and rock material and strength properties used in the global stability evaluations were based on the results of laboratory testing and our experience. These values are summarized below.

	Unit Weight (pcf)	Friction Angle (degrees)	Undrained Shear Strength (psf)		
Granular Borrow	125	32	0		
Marine Deposit (Sand)	120	32	0		
Glacial Till	130	38	0		
Weathered Bedrock	130	38	0		
Bedrock	infinite strength				

The calculated global stability factors of safety values are summarized below and calculations are included in Appendix E.

Structure	Factor of Safety			
	Static	Pseudo-Static		
I-95 NB Abutment No. 2	2.2	2.1		
I-95 NB Abutment No. 2 Wingwall Section 2	2.1	2.1		
I-95 NB Abutment No. 2 Wingwall Section 2	2.1	2.0		

The minimum calculated static factor of safety from our evaluations is 2.1. The minimum factor of safety required for static stability evaluations is 1.3 where the geotechnical parameters and subsurface stratigraphy are well defined, based on the requirements of LRFD Article 11.6.2.3. The minimum calculated factor of safety under pseudo-static earthquake loading from our evaluations is 2.0, using a horizontal coefficient of 0.06 (i.e., one-half of the peak ground acceleration coefficient, As). Values ranging from As/3 to As/2 are recommended in literature (Melo and Sharma, 2004). The reduction in As is due to soil slope flexibility and the fact that the peak ground acceleration during an earthquake lasts only for a very short period of time. The minimum factor of safety required for pseudo-static stability evaluations is 1.1 based on the requirements of LRFD. The calculated factor of safety for both the static case and pseudo-static case exceed the minimum required factor of safety.

Construction Considerations

The purpose of this section of the report is to provide comments and recommendations on items related to excavation, earthwork, and other geotechnical aspects of the proposed construction. Since it identifies potential construction issues related to foundations and earthwork, the information in this section is intended to aid personnel who monitor the construction activities. Prospective Contractors for this project should evaluate construction issues based on their own knowledge and experience in the Waterville, Maine area taking into consideration their proposed construction means, methods, and procedures.

EXCAVATION

We anticipate that excavation of the in-situ fill, marine deposits, and glacial till can be accomplished using normal earth-excavating equipment (i.e., hydraulic backhoes and excavators). In our opinion, temporary cut slopes in glacial till should typically be stable if constructed no steeper than about 1.5 horizontal to 1 vertical (1.5H:1V). Some sloughing and raveling should be anticipated in all temporary earth slopes. All temporary excavations should be made in accordance with Occupational Safety and Health Administration (OSHA) and other applicable regulatory agency requirements. The Contractor should be responsible for the design, stability, and safety of all temporary excavations.

As noted on the test boring logs, the naturally-deposited glacial till soils may contain cobbles and possibly some large boulders. We recommend that the Contract Documents require the Contractor to include provisions for cobble/boulder removal in their bid.

The following guidelines are recommended to protect the subgrade soils beneath footings:

- Make final excavations (e.g., within 5 ft of final subfooting bearing level) into bearing soils in-the-dry
 using smooth-bladed equipment to limit disturbance. Dewatering may be required within the
 excavation limits.
- During substructure construction, prevent water infiltration into the excavation to reduce the
 possibility of soil disturbance. All filling and concreting of subfootings should be performed in-thedry. Subgrades that become disturbed due to water infiltration should be over-excavated and
 stabilized.
- Exposed subgrades should be examined in the field by a geotechnical engineer prior to rebar cage
 construction to verify strength and bearing capacity. Over-excavation may be necessary to remove
 weak, disturbed, or otherwise unacceptable soils.
- Exposed granular soils at bearing strata should be proof-rolled until firm, as determined by a geotechnical engineer. Any soft areas revealed by proof-rolling should be excavated and replaced with approved granular material or additional subfooting concrete.
- Fill should be placed in lifts not exceeding 12 in. in loose measure and compacted using self-propelled vibratory equipment. In confined areas, the maximum loose layer should be reduced to 9 in., and compaction performed by hand-guided equipment. Cobbles or boulders having a size exceeding two-thirds of the loose lift thickness should be removed prior to compaction.
- Disturbance due to water infiltration and adverse weather could be reduced by maintaining footing excavations at least 12 in. above the final bearing level until immediately before placing subfooting concrete.
- Limit equipment traffic on exposed soil-bearing surfaces.
- Soil-bearing surfaces below completed foundations should be protected against freezing, before and
 after foundation construction. If construction is performed during freezing weather, footings should
 be backfilled to a sufficient depth (up to 6 ft) as soon as possible after they are constructed.
 Alternatively, insulating blankets or other means may be used for protection against freezing.

CONSTRUCTION DEWATERING

Based on the water levels measured in the observation wells installed at the site, we anticipate groundwater will be encountered during excavation for the abutment footings for both the NB and SB bridges since the bottom of excavation will be below the measured water levels. Because of this, we anticipate that temporary dewatering will be needed in order to complete the excavation and subgrade preparation in the dry and could likely be accomplished by passively pumping from open sumps and temporary ditches located at the base of the excavations. Sumps should be provided with filters suitable to prevent pumping of fine-grained soil particles.

The Contractor should be responsible for controlling all surface runoff, infiltration, and water from other sources at all times during excavation. Rainwater or snowmelt should be directed away from exposed foundation-bearing surfaces. Dewatering should be performed as required to maintain the undisturbed nature of soil surfaces and enable all final excavation, foundation construction, and backfilling to be completed "in-the-dry."

Dewatering should be performed in accordance with all applicable regulations. Dewatering effluent should be treated as required by applicable state and local regulations.

SUBMITTAL REVIEWS

The Contract Drawings and special provisions should be written so that the requirements of the documents are consistent with the design intent of the geotechnical recommendations outlined herein. The special provisions should require that the Contractor and the Contractor's engineer perform necessary analyses and submit the results to MaineDOT for review. We recommend that Haley & Aldrich be allowed to review the geotechnical-related submittals to ensure that the Contractor's analyses/submittals are in accordance with the intent of the design as summarized herein. This will enable us to ensure compliance with the design concepts, assumptions, and special provisions, and to facilitate design changes in the event that subsurface conditions differ from those anticipated prior to the start of construction.

CONSTRUCTION MONITORING

The geotechnical design and earthwork recommendations contained herein are based on the known and predictable behavior of a properly engineered and constructed foundation. Monitoring of the foundation construction activities is required to enable the geotechnical engineer to confirm that procedures and techniques used by the Contractor during construction are appropriate and will not impact the design of the bridge. Therefore, we recommend that an individual representing MaineDOT, qualified by geotechnical training and experience, be present at the site to provide monitoring during the foundation construction activities listed below.

- Determination of over-excavation limits of unsuitable soils below footing bearing levels.
- Preparation of the footing bearing surfaces.
- Placement and compaction of compacted fills below footing bearing level.

Limitations

This report is prepared for the exclusive use of McFarland Johnson and MaineDOT relative to the subject project. There are no intended beneficiaries other than McFarland Johnson and MaineDOT. Haley & Aldrich shall owe no duty whatsoever to any other person or entity on account of the Agreement or the report. Use of this report by any person or entity other than McFarland Johnson and MaineDOT for any purpose whatsoever is expressly forbidden unless such other person or entity obtains written authorization from McFarland Johnson and Haley & Aldrich. Use of this report by such other person or entity without the written authorization of McFarland Johnson and Haley & Aldrich shall be at such other person's or entities' sole risk and shall be without legal exposure or liability to Haley & Aldrich.

Use of this report by any person or entity, including by McFarland Johnson and MaineDOT, for a purpose other than relative to the subject project is expressly prohibited unless such person or entity obtains written authorization from Haley & Aldrich indicating that the report is adequate for such other use. Use of this report by any other person or entity for such other purpose without written authorization by Haley & Aldrich shall be at such person's or entities' sole risk and shall be without legal exposure or liability to Haley & Aldrich.

The information provided herein is based, in part, upon the data obtained from the referenced subsurface explorations. The nature and extent of variations between explorations may not become evident until construction. If variations then appear, it may be necessary to re-evaluate the recommendations of this report.

It is our understanding that this report may be included as a reference document in the documents that will be provided to the prospective Contractors for bidding. Please note that the recommendations included herein are superseded by the information contained in the documents and that the information contained in the documents takes precedence over the information provided in this report.

Closure

We appreciate the opportunity to continue to provide McFarland Johnson with geotechnical support services on this project. Please do not hesitate to contact us if you have any questions or comments.

Sincerely yours,

HALEY & ALDRICH, INC.

Justin A. DuBois, P.E. Senior Engineer

Wayne A. Chadbourne, P.E.

Principal

Erin A. Force, P.E. Senior Project Manager

Erin a. Force

ERIN A. FORCE

No. 12207

Enclosures:

Table I – Phase I and Phase II Exploration Location Data

Table II – Phase I and Phase II Exploration Subsurface Data

Figure 1 – Project Locus

Figures 2 and 3 – Site and Subsurface Exploration Location Plans

Figures 4 through 7 – Interpretive Subsurface Profiles

Appendix A – Test Boring Logs and Rock Core Photographs

Appendix B – Observation Well Installation and Groundwater Monitoring Reports

Appendix C – Laboratory Test Results

Appendix D – Historic Bridge Drawings

Appendix E – Geotechnical Design Calculations

TABLE I PHASE I AND PHASE II EXPLORATION LOCATION DATA

Replacement of I-95 Bridges over Webb Road MaineDOT WIN 21900.01, Bridge No. 5813 MaineDOT WIN 21894.01, Bridge No. 1461 Waterville, Maine

Haley & Aldrich, Inc. File No.: 132212-004

Test	Ground Surface		Offset Distance (ft)	Coord	inates ²
Boring No. ¹	Elevation (ft) ^{3,4}	Station ⁵	& Direction ⁵	Northing	Easting
		Northbou	ınd Bridge		
BB-WWR-101	227.6	120+53.2 NB	39.8 R	617232.8312	1161451.595
BB-WWR-102(OW)	234.1	120+90.3 NB	45.5 L	617307.942	1161396.846
BB-WWR-201	229.6	120+26.7 NB	36.1 L	617248.4	1161372.733
BB-WWR-202	226.0	121+0.7 NB	38.1 R	617274.662	1161474.202
		Southbou	ınd Bridge		
BB-WWR-103	234.2	220+7.4 SB	34.9 R	617276.6288	1161225.733
BB-WWR-104(OW)	241.4	220+40.8 SB	45.7 L	617346.7724	1161173.829
BB-WWR-203	237.7	219+84.6 SB	33.3 L	617292.293	1161155.579
BB-WWR-204	233.3	220+63.3 SB	38.6 R	617322.662	1161257.696
		Northboun	d Diversion		
BB-WWR-205	243.4	416+70.4 NB DIV	13.8 R	617065.106	1161199.873
BB-WWR-206	243.2	417+53.4 NB DIV	1.4 R	617142.756	1161230.762
BB-WWR-207	234.3	418+71.7 NB DIV	5.9 L	617248.219	1161284.813
BB-WWR-208	233.0	419+56.2 NB DIV	0.8 L	617318.222	1161332.452
BB-WWR-208A	232.9	419+57.6 NB DIV	3.3 R	617317.383	1161336.707
BB-WWR-209	252.2	424+53.1 NB DIV	2.6 R	617731.693	1161607.091
BB-WWR-210	255.4	425+57.2 NB DIV	2.0 R	617813.118	1161671.741

Notes:

	Individual	Date
Prepared By:	JAD/TPJ	7/14/2020
Checked By:	JAD	3/3/2022
Reviewed By:	MMB	3/10/2022

 $^{^{\,1}}$ Test boring locations are shown on Figure 2, Site and Subsurface Exploration Location Plan.

² As-drilled coordinates of test borings were determined by MaineDOT using GPS survey equipment, are measured in feet and reference NAD83, Maine 2000 West Zone coordinate system.

³ Ground surface elevations at test boring locations were determined in the field by MaineDOT using GPS survey equipment.

⁴ Elevations are measured in feet and reference the North American Vertical Datum of 1988 (NAVD 88).

⁵ Station and offset relative to the Northbound, Southbound, and Northbound Diversion baseline information determined by Haley & Aldrich.

TABLE II PHASE I AND PHASE II EXPLORATION SUBSURFACE DATA

Replacement of I-95 Bridges over Webb Road MaineDOT WIN 21900.01, Bridge No. 5813 MaineDOT WIN 21894.01, Bridge No. 1461 Waterville, Maine

Haley & Aldrich, Inc. File No.: 132212-004

			1							
	Ground	Topsoil/Fill		Marine Deposit			Glacial Till			Weathered Rock
Test Boring No. ¹	Surface Elevation (ft) ^{2,3}	Thickness	Depth to Top	El. of Top ^{2,3}	Thickness	Depth to Top	El. of Top ^{2,3}	Thickness	Depth to Top	El. of Top ^{2,3}
		(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)
							Northbou	ınd Bridge		
BB-WWR-101	227.6	2.0	2.0	225.6	3.0	5.0	222.6	4.8	9.8	217.8
BB-WWR-102(OW)	234.1	2.0	2.0	232.1	3.5	5.5	228.6	20.3	25.8	208.3
BB-WWR-201	229.6	2.0	2.0	227.6	2.0	4.0	225.6	12.6	NE	NE
BB-WWR-202	226.0	0.4	0.4	225.6	4.0	4.4	221.6	10.7	15.1	210.9
			•	•	•		Southbou	nd Bridge	•	
BB-WWR-103	234.2	1.0	1.0	233.2	2.5	3.5	230.7	8.8	12.3	221.9
BB-WWR-104(OW)	241.4	2.0	NE	NE	NE	2.0	239.4	12.5	14.5	226.9
BB-WWR-203	237.7	0.3	0.3	237.4	1.9	2.2	235.5	10.3	NE	NE
BB-WWR-204	233.3	1.0	1.0	232.3	2.0	3.0	230.3	10.4	NE	NE
	•		•	•	•	•	Northbour	d Diversion	•	
BB-WWR-205	243.4	4.0	4.0	239.4	10.0	14.0	229.4	>3.0	NE	NE
BB-WWR-206	243.2	0.8	0.8	242.4	15.2	16.0	227.2	>1.0	NE	NE
BB-WWR-207	234.3	0.7	0.7	233.6	3.3	4.0	230.3	9.0	13.0	221.3
BB-WWR-208	233.0	2.0	2.0	231.0	3.0	5.0	228.0	>1.9	NE	NE
BB-WWR-208A	232.9	NE	NE	NE	NE	6.9	226.0	>10.6	NE	NE
BB-WWR-209	252.2	NE	0.0	252.2	16.3	16.3	235.9	>0.7	NE	NE
BB-WWR-210	255.4	0.5	0.5	254.9	12.4	12.9	242.5	>4.1	NE	NE

Notes:

Test boring locations are shown on Figure 2, Site and Subsurface Exploration Location Plan.

² Ground surface elevations at test boring locations were determined in the field by MaineDOT using GPS survey equipment.

 $^{^{3}\,}$ Elevations are measured in feet and reference the North American Vertical Datum of 1988 (NAVD 88).

⁴ NE = not encountered.

APPENDIX A

Test Boring Logs and Rock Core Photographs

I	Main	e Dep	artment	of Transport	tatio	n	Pro	ject:	Repla	acemen	of I-95 Bridges over Webb Boring No.: BB-W	WR-101
		_	Soil/Rock Exp US CUSTOM				Road Location: Waterville, Maine				Maine WIN:	00.00
Drill	er:		New England	l Boring Contractors	Ele	evation	(ft.) 227.6				Auger ID/OD: HSA-2.5 in.	ID
Ope	rator:		B. Enos		Da	tum:			NA	VD 88	Sampler: Split Spoon-	1.375 in. ID
Log	ged By:		N. Klausmey	er	Rig	д Туре	:		Mo	bile B-	3 Track Mount Hammer Wt./Fall: HW-300#/24	in.;SS-140#/30
Date	Start/F	inish:	06/12/2018		Dr	illing N	letho	od:	Cas	sed Was	n Boring Core Barrel: NQ-2.0-in. I	D
Bori	ng Loca	ation:	Sta. 120+53.2	2 NB, 39.8 RT	Ca	sing II)/OD	:	HW	/-4.0 in	ID Water Level*: 1.0 ft (during	drilling)
Ham	mer Eff	ficiency F	actor: 0.677		Ha	mmer	Туре	ə:	Auton	natic 🛛	Hydraulic □ Rope & Cathead □	
MD = U = T MU =	plit Spoon Unsucces hin Wall T Unsucces	sful Split Sp ube Sample sful Thin Wa	oon Sample Atte	RC = Rolle Attempt WOH = W	id Stem a llow Sten er Cone eight of	Auger n Auger 140lb. Ha		9 9 1	Su(lab) = lp = Unc l-uncorr lammer	Lab Var onfined ected = I Efficiend	led Field Vane Undrained Shear Strength (psf) 9 Undrained Shear Strength (psf) 9 Undrained Shear Strength (psf) 9 Undrained Shear Strength (psf) 10 Undrained Shear Strength (psf) 11 Undrained Shear Strength (psf) 12 Undrained Shear Strength (psf) 13 Undrained Shear Strength (psf) 14 Undrained Shear Strength (psf) 15 Undrained Shear Strength (psf) 16 Undrained Shear Strength (psf) 17 Undrained Shear Strength (psf) 18 Undrained Shear Strength (psf) 19 Undrained Shear Strength (psf) 10 Undrained Shear Strength (psf) 10 Undrained Shear Strength (psf) 10 Undrained Shear Strength (psf) 11 Undrained Shear Strength (psf) 12 Undrained Shear Strength (psf) 13 Undrained Shear Strength (psf) 14 Undrained Shear Strength (psf) 15 Undrained Shear Strength (psf) 16 Undrained Shear Strength (psf) 17 Undrained Shear Strength (psf) 18 Undrained Shear Strength (psf) 19 Undrained Shear Strength (psf) 19 Undrained Shear Strength (psf) 19 Undrained Shear Strength (psf) 10 Undrained Shear Strength (psf) 11 Undrained Shear Strength (psf) 12 Undrained Shear Strength (psf) 13 Undrained Shear Strength (psf) 14 Undrained Shear Strength (psf) 15 Undrained Shear Strength (psf) 16 Undrained Shear Strength (psf) 17 Undrained Shear Strength (psf) 17 Undrained Shear Strength (psf) 18 Undr	
			PP = Pocket Point Shear Test A	ttempt WO1P = V				ng N	1 ₆₀ = (H	ammer E	prected Corrected for Hammer Efficiency G = Grain Size Analysis C = Consolidation Test	
Depth (ft.)	Sample No.	Pen./Rec. (in.)	Sample Depth (ft.)	Blows (/6 in.) Shear Strength (psf) or RQD (%)	N-uncorrected	N ₆₀	Casing	Blows	Elevation (ft.)	Graphic Log	Visual Description and Remarks	Laboratory Testing Results/ AASHTO and Unified Class.
0	1D	24/1	0.0 - 2.0	WOH/WOH/ WOH			HS	SA			Brown, wet, very loose, fine SAND, little medium to coarse sand little silt, trace roots, poorly graded -FILL-(SP-SM)	
	2DA 2DB	12/10	2.0 - 3.0	1/4/8/15	12	14			225.6 224.6		Grey, wet, medium dense, fine to medium SAND, trace silt, trac gravel, trace roots and organics ,-MARINE DEPOSITS-(SP)	
	3DA	12/10	4.0 - 5.0	7/14/11/11	25	28			223.6	· · · · · · · · · · · · · · · · · · ·	Grey, moist, very stiff, SILT, trace fine sand)-
- 5 -	3DB	12/12	5.0 - 6.0						222.6	9101 001 0101 001 0101 001	Brown, wet, medium dense, fine to coarse SAND, some fine gravel, trace silt, trace organics -MARINE DEPOSITS-(SW-SM	
											Brown, moist, very stiff, SILT, some fine to coarse sand, little gravel -GLACIAL TILL-(ML))-
10 -								/	217.8		Note: Drill action and wash water contents indicate gravel from 5.0 to 9.8 ft. Grey, very hard, wet, WEATHERED BEDROCK	3-
	R1	40/23	11.5 - 14.8	RQD = 43%			N	Q	216.1		Note: Sample collected from wash water return. -WEATHERED BEDROCK-	
							СО	RE			Note: Begin NQ Rock Core at 11.5 ft. Top of Bedrock El.216.1	
1.5	R2	9/9	14.8 - 15.6	RQD = 0%							R1: Grey, aphanitic PHYLLITE, hard, fresh to slightlyweathered joints dipping at low to steep angles, very close to close, tight to open, calcite coatings on some joint surfaces, occasional calcite	,
15 -	R3	28.8/11	15.6 - 18.0	RQD = 0%							veins. Recovery=58% Rock Quality=Poor R1 Core Times (min:sec): 11.5-12.5' (4:33); 12.5-13.5' (2:47);	
	R4	19/19	18.0 - 19.6	RQD = 0%							13.5-14.5' (2:21); 14.5-14.8' (2:07) R2: Similar to R1, except joints dipping at steep angles, very close, no calcite veins. Recovery=100% Rock Quality=Very Poor	
- 20 -	R5	41/41	19.6 - 23.0	RQD = 83%							R2 Core Times (min:sec): 14.8-15.6' (2:58) R3: Similar to R1, except joints very close.	
20	R6	60/52	23.0 - 28.0	RQD = 75%							Recovery=38% Rock Quality=Very Poor R3 Core Times (min:sec): 15.6-16.6' (2:23); 16.6-17.6' (3:17); 17.6-18.0' (0:45) R4: Similar to R1, except joints very close. Recovery=100% Rock Quality=Very Poor R4 Core Times (min:sec): 18.0-19.0' (3:38); 19.0-19.6' (2:40)	
25	KU	00/32	23.0 - 26.0	RQD - 13/0			$\downarrow \setminus$	/			R5: Similar to R1, except fresh, joints very close to moderately close, occasional quartz/calcite veins, secondary pyrite mineralization on joint surfaces.	
Rem	arks:											

Stratification lines represent approximate boundaries between soil types; transitions may be gradual.

* Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those present at the time measurements were made.

Page 1 of 2

Boring No.: BB-WWR-101

I	Main	e Dep	artment	t of Transpor	tatio	n	Project			of I-95 Bridges over Webb	Boring No.:	BB-W	WR-101
Soil/Rock Exploration Log US CUSTOMARY UNITS							Locatio	Road on: Wa		Maine	WIN:	219	00.00
Drill					Lei	evation	\	227	6				
	rator:		B. Enos	d Boring Contractors		evalioi atum:	1 (11.)		.6 VD 88		Auger ID/OD: Sampler:	HSA-2.5 Split Spor	on-1.375 in. ID
<u> </u>	ged By:		N. Klausmey	/er	_	g Type	:			3 Track Mount	Hammer Wt./Fall:		#/24 in.;SS-
-	Start/F		06/12/2018		-		/lethod:			h Boring	Core Barrel:	NQ-2.0-ii	
-	ng Loca			2 NB, 39.8 RT	-	asing II			-4.0 in.		Water Level*:		ring drilling)
			Factor: 0.677			mmer		Autom		Hydraulic □	Rope & Cathead □		<u> </u>
MD = U = T MU = V = Fi	plit Spoon Unsucces hin Wall Tu Unsucces ield Vane S	sful Split S ube Sample sful Thin W Shear Test	poon Sample Atte e /all Tube Sample , PP = Pocket F /ane Shear Test <i>F</i>	Attempt RC = Roll WOH = W Penetrometer WOR/C =	olid Stem ollow Ster Ier Cone Veight of Weight of Weight of	Auger m Auger 140 lb. H of Rods o	r Casing	S _{u(la} q _p = N-ur Ham N ₆₀	ab) = Lab Unconfincorrecte Inmer Effic = SPT N	emolded Field Vane Undrained Sh- Vane Undrained Shear Strength (ksf) ded Compressive Strength (ksf) d = Raw Field SPT N-value ciency Factor = Rig Specific Annua -uncorrected Corrected for Hammener Efficiency Factor/60%)*N-unco	psf)	xet Torvane She /ater Content, p juid Limit astic Limit sticity Index in Size Analysia asolidation Test	s
Depth (ft.)	Sample No.	Pen./Rec. (in.)	Sample Depth (ft.)	Blows (/6 in.) Shear Shear Strength (psf) or RQD (%)	N-uncorrected	N ₆₀	Casing Blows	Elevation (ft.)	Graphic Log		ription and Remarks		Laboratory Testing Results/ AASHTO and Unified Class
- 30 35 40 45							NQCORE	199.6		Recovery=100% Rock Quality=Good R5 Core Times (min:sec): 1 21.0-22.0' (3:37); 22.0-23.0 R6: Grey, aphanitic, PHYL low, steep and vertical angl Recovery=87% Rock Quality=Fair R6 Core Times (min:sec): 2 25.0-26.0' (1:55); 26.0-27.0 Bottom of Exploration a	'(3:36) LITE, hard, fresh, joints des, very close to moderate (3:0-24.0' (2:25); 24.0-25. (1:40); 27.0-28.0' (1:39)	dipping at e spacing. 0' (2:18);	
50													
Stratil	er level rea	adings have		nundaries between soil types mes and under conditions s					occur due	e to conditions other	Page 2 of 2 Boring No	.: BR-W	WR-101

Maine Department of Transportation							Project	: Repla	acement	of I-95 Bridges over Webb	Boring No.: BB-WV		WR-102	
Soil/Rock Exploration Log US CUSTOMARY UNITS							Locatio	Road n: Wa		Maine	WIN:	2190	00.00	
Driller: New England Boring Contractors Elevati							(ft.)	234			Auger ID/OD:	HSA 2.5 in. II		
Operator: B. Enos Datum							_		VD 88	2 To al Marco	Sampler:	Split Spoon-1.		
Logged By: N. Klausmeyer Rig										3 Track Mount	Hammer Wt./Fall: Core Barrel:			
Date Start/Finish: 06/11/2018 Drilling Boring Location: Sta. 120+90.3 NB, 45.5 LT Casing									7-4.0 in.	h Boring	Water Level*:	NQ-2.0 in. ID 5.2 ft (during		
			actor: 0.677	NB, 43.3 E1	_	nmer		Auton			Rope & Cathead	3.2 it (during	drilling)	
Defini	tions:		0.077		Core Sam	ple		S _u = Pea	k/Remolo	led Field Vane Undrained Shear St	rength (psf) T _V = Pocket T		igth (psf)	
MD = U = TI MU = V = Fi	nin Wall Tu Unsucces: eld Vane S	sful Split Sp ube Sample sful Thin Wa Shear Test,	oon Sample Atter all Tube Sample A PP = Pocket Pe ne Shear Test At	mpt HSA = Ho	eight of 14 Weight of	Auger 10lb. Ha Rods o	o Mmer H r Casing N	a _p `= Und N-uncorr Hammer N ₆₀ = SF	onfined C ected = R Efficiency PT N-unco	e Undrained Shear Strength (psf) compressive Strength (ksf) aw Field SPT N-value ractor = Rig Specific Annual Calit prected Corrected for Hammer Effificiency Factor/60%)*N-uncorrected	LL = Liquid L PL = Plastic l pration Value PI = Plasticity ciency G = Grain Siz	Limit y Index ze Analysis		
		<u>-</u>		•	ъ				1				Laboratory	
Depth (ft.)	Sample No.	Pen./Rec. (in.)	Sample Depth (ft.)	Blows (/6 in.) Shear Strength (psf) or RQD (%)	N-uncorrected	09 _N	Casing Blows	Elevation (ft.)	Graphic Log		ription and Remarks		Testing Results/ AASHTO and Unified Class.	
0	1D	24/19	0.0 - 2.0	1/2/9/6	11	12	H\$A	232.6		Brown, dry, stiff, Sandy SII contains roots -FILL-(ML)	T, little gravel, poorly	graded,	G#474286 (A-4(0)) ML	
	2D	24/17	2.0 - 4.0	8/8/6/4	14	16		232.1	(***	Brown, moist, stiff, SILT, li -FILL-(ML)	ttle fine to medium san	d, little gravel		
								230.1	12:00:123	Brown, wet, medium dense, trace gravel, trace organics,		G#474285 (A-2-4(0))		
- 5 -	3D	24/10	4.0 - 6.0	16/12/26/25	38	43			100000131 10000131 10060131	spoon, slight organic odor -MARINE DEPOSITS-(SP-		4.0-	SP-SM	
								228.€		Brown, wet, dense, fine to n layer, contains organics, roc -MARINE DEPOSITS-(SP- Note: Water encountered at	ots SM)	t, 2-in. silt		
										3-in. layer of fractured rock -GLACIAL TILL-(GP)		5.5- LITE)		
							 			-dlacial fill-(df)				
- 10 -							L V	224.1	- 3					
	4D	24/17	10.0 - 12.0	10/13/15/16	28	32	43 HW 99			Brown, wet, hard, SILT, litt grading to grey with depth (interbedded weathered rock	color change at 11.5 ft)			
										-GLACIAL TILL-(ML)				
							145	-						
							166							
- 15 -	5D	24/17	15.0 - 17.0	24/32/51/94	83	94	OPEN			Grey, wet, hard, SILT, little -GLACIAL TILL-(ML)	fine to coarse sand, litt	le gravel		
										, ,				
- 20 -								214.1				— — —20.0-	G#474284	
	6D	13/13	20.0 - 21.1	42/59/23(2")	82	93				Grey, wet, hard, Sandy SIL -GLACIAL TILL-(ML)	I, little gravel		(A-4(0)) ML	
										Note: Refusal on split-spoor	n sampler at 21.1 ft.			
								-						
								1						
25 Rem	arks:						<u> </u>			_		_		
		es represent	approximate bou	ndaries between soil types	, transition	s may b	pe gradual.			Total Network on Spin-Sp001	Page 1 of 2			
* Wate	er level rea	adings have		nes and under conditions st			-	ons may	occur due	to conditions other	Boring No	o.: BB-W	WR-102	

I	Main	e Dep	artment	of Transpor	tatio	n	Proje	ect:	Repla	cement	of I-95 Bridges over Webb	Boring No.:	BB-W	WR-102			
			oloration Log IARY UNITS			Loca	atio	Road n: Wa	terville,	Maine	WIN:	21900.00					
Drill	er:		New England	Boring Contractors	Ele	evation	(ft.)		234	.1		Auger ID/OD:	HSA 2.5	in. ID			
Ope	rator:		B. Enos		Da	tum:			NA	VD 88		Sampler:	Split Spo	on-1.375 in. ID			
Logged By: N. Klausmeyer							:		Mo	bile B-5	3 Track Mount	Hammer Wt./Fall:	HW-300#	#/24 in.;SS-			
Date Start/Finish: 06/11/2018						illing N		d:	Cas	ed Was	h Boring	Core Barrel:	NQ-2.0 ii	n. ID			
Bori	ng Loca	ation:		3 NB, 45.5 LT	-	sing II				-4.0 in.		Water Level*:		ring drilling)			
			actor: 0.677		_	mmer			Autom		Hydraulic □	Rope & Cathead □		88)			
Defini D = S MD = U = T MU = V = Fi	tions: plit Spoon Unsucces hin Wall Tu Unsucces ield Vane S	Sample sful Split Sp ube Sample sful Thin Wa Shear Test,	oon Sample Atte	R = Rock SSA = So MSA = Hc RC = Roll Attempt WOR C Solution WOR/C = MOR/C = MOR/C Solution MOR/C So	Core Sar olid Stem of ollow Sten er Cone reight of	mple Auger n Auger 140 lb. H of Rods c	ammer r Casin		S _u = S _{u(l:} q _p = N-ur Ham N ₆₀	Peak/R ab) = Lab Unconfincorrecte Imer Effine	emolded Field Vane Undrained Sh Vane Undrained Shear Strength (ned Compressive Strength (ksf) de Aww Field SPT N-value ciency Factor = Rig Specific Annua -uncorrected Corrected for Hamm- ner Efficiency Factor/60%)*N-unco	ear Strength (psf) $T_V = Pock$ (psf) $WC = W$ $LL = Liq$ $PL = Pla$ Il Calibration Value $Pl = Pla$ er Efficiency $G = Gra$	et Torvane Sh fater Content, p uid Limit astic Limit sticity Index in Size Analysi solidation Test	s			
				Sample Information			_	_		-				Laboratory			
Depth (ft.)	Sample No.	Pen./Rec. (in.)	Sample Depth (ft.)	Blows (/6 in.) Shear Strength (psf) or RQD (%)	N-uncorrected	N ₆₀	Casing	Blows	Elevation (ft.)	Graphic Log	Visual Desc	ription and Remarks	-25.0	Testing Results/ AASHTO and Unified Class			
25	7D	10/8	25.0 - 25.8	62/102(4")			OPE	EN	209.1 208.3		silt, trace medium to fine sa weathered rock -GLACIAL TILL-(GP-GM	dense, fine GRAVEL and coarse SAND, littl im to fine sand and coarse gravel, contains					
								_			-WEATHERED BEDROC	K-					
- 30 -	8D	1/1	30.0 - 30.1	150(1")			NO COF	SE SE	202.1		Grey, very wet, WEATHER	irey, very wet, WEATHERED BEDROCK					
	R1	50/50	31.8 - 36.0	RQD = 58%					203.1		Note: Advanced roller bit to	31.8 ft. Begin NQ rock o	31.0 core at 31.8				
- 35 -	R2	48/50	36.0 - 40.0	RQD = 60%							Top of Bedrock El. 203.1 R1: Grey, aphanitic PHYLI moderate to steep angles, of mineralization observed on Recovery=100% Rock Quality=Fair R1 Core Times (min:sec): 3 33.8-34.8' (6:31); 34.8-35.8 R2: Grey, aphanitic PHYLI moderate to steep angles, vopen, calcite coating observ Recovery=100% Rock Quality=Fair R2 Core Times (min:sec): 3 38.0-39.0' (4:44); 39.0-40.0	lose to moderately close, to some joint surfaces. 31.8-32.8' (7:18); 32.8-33. 31.8-35.8' (5:57); 35.8-36.0' (2:33) LITE, hard, fresh, joints diery close to moderately close to moderately closed on single joint surface 36.0-37.0' (5:30); 37.0-38.	8' (7:04); ipping at ose, tight to				
- 40 -											, ,,	lerately dipping joints. Pyrite observ	te observed	qp=5,970 psi			
	R3	24/24	40.0 - 42.0	RQD = 71%				<u>/</u>	192.1		on joint surface. Recovery=100% Rock Quality=Fair Note: R3 core times not rec Bottom of Exploration a	corded.	4 2.0				
- 45 -																	
								\dashv									
								\dashv									
50	L																
Stratif				ındaries between soil types nes and under conditions si		-	•		ns mav (occur du	e to conditions other	Page 2 of 2 Boring No	DD 17	WWD 102			

Maine Department of Transportation								Repla	acement	of I-95 Bridges over Webb	Boring No.:	BB-WW	/R-103		
Soil/Rock Exploration Log US CUSTOMARY UNITS								Road n: Wa	terville,	Maine	WIN:	2189	94.00		
Driller: New England Boring Contractors Elevation								vation (ft.) 234.2 Auger ID/OD: HSA-2.5							
Operator: B. Enos Datum:															
Logged By: N. Klausmeyer Rig Typ															
Date	Start/F	inish:	06/13/2018		Dr	illing N	lethod:	Cas	ed Was	h Boring	Core Barrel:	NQ-2.0 in. ID			
Bori	ng Loca	tion:	Sta. 220+7.4	SB, 34.9 RT	Ca	sing IC)/OD:	HW	/-4.0 in.	ID	Water Level*:	3.6 ft (during	drilling)		
Ham	mer Eff	iciency F	actor: 0.677		Ha	mmer	Туре:	Auton	natic 🛛	Hydraulic □	Rope & Cathead □				
MD = ' U = Th MU = V = Fi	olit Spoon Unsuccess nin Wall Tu Unsuccess eld Vane S	sful Split Spo ube Sample sful Thin Wa Shear Test,	oon Sample Atter Ill Tube Sample A PP = Pocket Pe ne Shear Test At	RC = Rolle Attempt WOH = We enetrometer WOR/C = \(\begin{array}{c} \text{WO1P = W} \end{array}\)	d Stem a ow Sten r Cone eight of 7 Veight c	Auger n Auger 140lb. Ha of Rods o	o N mmer H r Casing N	ou(lab) = lp = Unc l-uncorr lammer l60 = SF	Lab Van onfined C ected = R Efficiency PT N-unco	led Field Vane Undrained Shear Si e e Uriela Washear Strength (psf) compressive Strength (ksf) aw Field SPT N-value / Factor = Rig Specific Annual Calii prected Corrected for Hammer Effi fficiency Factor/60%)*N-uncorrecte	WC = Water LL = Liquid I PL = Plastic bration Value PI = Plasticit ciency G = Grain Si	Content, percent Limit Limit y Index ze Analysis	gth (psf)		
				Sample Information					1				Laboratory		
Depth (ft.)	Sample No.	Pen./Rec. (in.)	Sample Depth (ft.)	Blows (/6 in.) Shear Strength (psf) or RQD (%)	N-uncorrected	N ₆₀	Casing Blows	Elevation (ft.)	Graphic Log		ription and Remarks		Testing Results/ AASHTO and Unified Class.		
0	1DA	24/16	0.0 - 2.0	2/1/1/1	2	2	HSA	233.2		Brown, very loose, fine to c contains roots \rightarrow-FILL-(SW-SM)	oarse SAND, some gra		G#474299 (A-1-b(0)) SW-SM		
	1DB 2D	24/9	2.0 - 4.0	1/2/2/17	4	5		232.2		Brown, moist, soft, SILT, li contains roots and organics -MARINE DEPOSITS-(MI					
-	3D	24/10	4.0 - 6.0	15/12/27/10	39	44		230.7		Brown, wet, medium stiff, Sorganics			G#474300 (A-4(0)) ML		
- 5 -										-MARINE DEPOSITS-(ML Light brown, wet, hard, SIL -GLACIAL TILL-(ML)	<u>* </u>	3.5- and and gravel			
-	4D	24/24	6.0 - 8.0	12/15/16/19	31	35				Light brown, wet, hard, SIL -GLACIAL TILL-(ML)	T, little fine to coarse s	and and gravel,			
-										Light brown, wet, hard, SIL coarse sand and gravel -GLACIAL TILL-(ML)	T, little fine sand, trace	e medium to			
- 10 -	5D	24/15	9.0 - 11.0	20/27/34/17	61	69	HW			Brown, moist, hard, SILT, s to coarse sand, 1-in. layer o -GLACIAL TILL-(ML)		vel, trace fine			
-	6D	16/8	11.0 - 12.3	20/36/50(4")				223.2		Grey, wet, very dense, fine	 to coarse GRAVEL, lit				
-								221.9		fine to coarse sand -GLACIAL TILL-(GM) Note: refusal at 12.3 ft. Dril	1 action and wash water	12.3-			
15								219.6	<i>111113</i> .	indicate gravel and weather encountered at 14.6 ft. Adva	ed rock chips. Top of b	edrock Begin NQ			
- 15 -	R1	48/45	15.0 - 19.0	RQD = 73%			NQ Core CORE			Top of Bedrock El. 219.6 R1: Grey, aphanitic, PHYLl weathered, joints dipping at moderately close, tight to or	low to steep angles, ve	ry close to			
										Recovery=94% Rock Quality=Fair R1 Core Times (min:sec): 1 17.0-18.0' (2:24); 18.0-19.0	5.0-16.0' (2:22); 16.0-1				
- 20 -	R2	32/32	19.0 - 21.7	RQD = 47%						R2: Similar to R1, except or Recovery=100% Rock Quality=Poor	* *		qp=7,387 psi		
	R3	40/40	21.7 - 25.0	RQD = 70%						R2 Core Times (min:sec): 1 21.0-21.7' (3:00)	, ,,	, ,,			
				-						R3: Grey, aphanitic, PHYLl weathered, joints dipping at close, oxidation on joint sur	low and steep angles,	very close to			
										Recovery 100% Rock Quality=Fair R3 Core Times (min:sec): 2 23.0-24.0' (3:17); 24.0-25.0		23.0-' (3:32);			
25 Rem	arks:	<u> </u>					ı V		es ille	23.0-27.0 (3.17); 24.0-23.0	(7.14)				
											Page 1 of 2				

Boring No.: BB-WWR-103

Maine Department of Transporta	ation	Project	: Repla Road	cement	of I-95 Bridges over Webb	Boring No.:	BB-WWR-103	
Soil/Rock Exploration Log US CUSTOMARY UNITS		Locatio		terville,	, Maine	WIN:	21894.00	
	1	(5)						
riller: New England Boring Contractors	Elevation	ı (π.)	234.			Auger ID/OD:	HSA-2.5 in. ID	
Operator: B. Enos	Datum:			VD 88	72. T. 1.16	Sampler:	Split Spoon-1.375 in. ID	
ogged By: N. Klausmeyer	Rig Type				53 Track Mount	Hammer Wt./Fall:	HW-300#/24 in.;SS-	
tate Start/Finish: 06/13/2018	Drilling M Casing II				h Boring	Core Barrel: Water Level*:	NQ-2.0 in. ID	
Sta. 220+7.4 SB, 34.9 RT	Hammer			-4.0 in.		•	3.6 ft (during drilling)	
D = Unsuccessful Split Spoon Sample Attempt HSA = Hollo = Thin Wall Tube Sample RC = Roller U = Unsuccessful Thin Wall Tube Sample Attempt WOH = Wei = Field Vane Shear Test, PP = Pocket Penetrometer WORIC = W	ore Sample Stem Auger ow Stem Auger	ammer r Casing	S _{u(la} q _p = N-un Ham N ₆₀	Peak/R ab) = Lal Unconfi correcte mer Effi = SPT N	Hydraulic ☐ emolded Field Vane Undrained Sh b Vane Undrained Shear Strength ned Compressive Strength (ksf) id = Raw Field SPT N-value ciency Factor = Rig Specific Annua l-uncorrected Corrected for Hamm mer Efficiency Factor/60%)"N-uncc 1	(psf) WC = W		
	ъ			1			Laboratory	
Sample No. Sample Depth (ft.) Blows (/6 in.) Shear Strength (psf) or RQD (%)	N-uncorrected N60	Casing Blows	Elevation (ft.)	Graphic Log	Visual Desc	ription and Remarks	Testing Results/ AASHTO and Unified Class	
			209.2		Bottom of Exploration a	t 25.0 feet below ground		
0								
5								
0								
5								
			1					
emarks:			<u> </u>		l			
								
tratification lines represent approximate boundaries between soil types; tr	ransitions may b	oe gradual.				Page 2 of 2		
Water level readings have been made at times and under conditions state than those present at the time measurements were made.	ed. Groundwate	er fluctuatio	ons may o	occur du	e to conditions other	Boring No.	: BB-WWR-103	

I	Main	e Dep	artment	of Transpor	tatio	n	Projec	t: R	eplac	ement	of I-95 Bridges over Webb	Boring No.:	BB-WW	/R-104
			Soil/Rock Exp US CUSTOM				Location		oad Wate	erville,	Maine	WIN:	2189	94.00
Drille	er:		New England	Boring Contractors	Ele	evation	(ft.)		241.4	4		Auger ID/OD:	HSA-2.5 in. II)
Ope	ator:		B. Enos		Da	ıtum:			NAV	/D 88		Sampler:	Split Spoon-1	375 in. ID
Logg	jed By:		N. Klausmeye	er	Ri	д Туре	:		Mob	ile B-5	3 Track Mount	Hammer Wt./Fall:	HW-300#/24	in.;SS-140#/30
Date	Start/F	inish:	06/13/2018		Dr	illing N	lethod:		Case	d Was	n Boring	Core Barrel:	NQ-2.0 in. ID	
Bori	ng Loca	ation:	Sta. 220+40.8	SB, 45.7 LT	Ca	sing II	D/OD:		HW-	4.0 in.	ID	Water Level*:	6.0 ft (during	drilling)
Ham	mer Eff	ficiency F	actor: 0.677		Ha	ımmer	•			ıtic 🛛		Rope & Cathead □		
MD = U = Th MU = V = Fi	olit Spoon Unsucces nin Wall T Unsucces eld Vane	ssful Split Sp ube Sample ssful Thin Wa Shear Test,	oon Sample Atter all Tube Sample <i>A</i> PP = Pocket Pe ane Shear Test At	RC = Rol Attempt WOH = W enetrometer WOR/C =	olid Stem on the ollow Stem of	Auger n Auger 140lb. Ha of Rods o	mmer r Casing	S _{u(la} q _p = l N-und Hamr N ₆₀ =	b) = L Uncor correct mer E = SPT	_ab Van nfined C cted = R :fficiency 「N-unco	led Field Vane Undrained Shear Ste e Undrained Shear Strength (psf) ompressive Strength (ksf) aw Field SPT N-value Factor = Rig Specific Annual Calit rrected Corrected for Hammer Effif fficiency Factor/60%)*N-uncorrecte	WC = Water LL = Liquid l PL = Plastic oration Value PI = Plasticit ciency G = Grain Si	Limit y Index ze Analysis	gth (psf)
-				Sample Information			1	1						Laboratory
Depth (ft.)	Sample No.	Pen./Rec. (in.)	Sample Depth (ft.)	Blows (/6 in.) Shear Strength (psf) or RQD (%)	N-uncorrected	N ₆₀	Casing Blows	Elevation	(ft.)	Graphic Log	Visual Desci	iption and Remarks		Testing Results/ AASHTO and Unified Class.
0	1D	24/12	0.0 - 2.0	1/1/5/12	6	7	OPEN				Brown, dry, loose, Silty fine trace gravel, contains roots -FILL-(SM)	to medium SAND, tra	ce coarse sand,	G#474301 (A-4(0)) SM
								23	39.4	\bowtie			2.0-	
	2D	24/14	2.0 - 4.0	5/9/13/13	22	25		-	,,,,		Brown, moist, very stiff, SII gravel -GLACIAL TILL-(ML)	LT, little fine to coarse		
ŀ								-			Brown, moist, very stiff, SII	T some fine to coarse	sand trace	G#474302
]	3D	24/16	4.0 - 6.0	7/8/9/8	17	19					gravel	27, some mie to comoc	suira, trace	(A-4(0))
. 5								1			-GLACIAL TILL-(ML)			ML
ŀ								┨			Note: Water encountered at	6.0 ft.		
	4D	24/24	6.0 - 8.0	9/7/5/5	12	14		1			Brown, wet, stiff, SILT, trac	e fine to medium sand	trace fine	
											gravel -GLACIAL TILL-(ML)			
ŀ								1						
								-						
10	5D	24/14	10.0 - 12.0	8/9/12/30	21	24					Brown, wet, very stiff, SILT fine to medium sand, botton			
- }			1000			-		┨			-GLACIAL TILL-(ML)	i i iii. oi sampie weatii	ered bedrock	
ŀ								1						
								1						
							$ \setminus /$	22	26.9	PGRA	N. D. II. d I. I.		14.5	
15	6D	4/3	15.0 - 15.3	100(4")			T \//	1			Note: Drill action and wash bedrock at 14.5 ft.		weathered	
ŀ							V	1			Grey, very hard, wet, WEA	THERED BEDROCK		
	R1	54/39	16.9 - 21.4	RQD = 43%			NQ Cor	el 22	24.5	121212			16.9	
							CORE	1		UM)	Top of Bedrock El. 224.5 R1: Grey, aphanitic to fine g	regimed DIIVI LITE ha		
İ								1		(Bell)	dipping at high and low ang			
ŀ								-			open, slightly oxidized joint Recovery=72%	surfaces.		
										Hill	Rock Quality=Poor			
20								1		Mill	R1 Core Times (min:sec): 1 18.9-19.9' (3:26); 19.9-20.9'	6.9-17.9' (2:53); 17.9-1	8.9' (3:06); 2)	
ŀ								+		AMB.	Note: Collected remainder of	of R1 run in R2 recover	y.	
ļ	R2	48/55	21.4 - 25.4	RQD = 96%			$\sqcup \!\!\! \perp$	1			R2: Similar to R1, except jo to close, slight oxidation on			
											veins.	John Surfaces, Occasion	iai quartz	
ł								1		UND)	Recovery=100% Rock Quality=Excellent			
ļ							 	4		High)	R2 Core Times (min:sec): 2		3.4' (2:08);	
25										ÜKA	23.4-24.4' (2:14); 24.4-25.4' Note: Collected extra core s		ious run	
Rem	arks:						. v					pro in its from piev		

Stratification lines represent approximate boundaries between soil types; transitions may be gradual.

Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those present at the time measurements were made.

Page 1 of 2

	Main	e Dep	artment	of Transport	atio	n	Project			of I-95 Bridges over Webb	Boring No.:	BB-W	WR-104
			Soil/Rock Exp				Locatio	Road n: Wa		Maine	WIN:	218	94.00
Drill	er:		New England	Boring Contractors	Ele	evation	(ft.)	241	.4		Auger ID/OD:	HSA-2.5	in. ID
	rator:		B. Enos		-	tum:	(/		VD 88		Sampler:		on-1.375 in. ID
Log	ged By:		N. Klausmey	er	Rig	g Type	:	Mo	bile B-5	3 Track Mount	Hammer Wt./Fall:		#/24 in.;SS-
	Start/F	inish:	06/13/2018		-		lethod:	Cas	ed Was	h Boring	Core Barrel:	NQ-2.0 ir	ı. ID
Bori	ng Loca	tion:	Sta. 220+40.8	8 SB, 45.7 LT	Ca	sing II	D/OD:	HW	7-4.0 in.	ID	Water Level*:	6.0 ft (du	ring drilling)
Ham	mer Eff	iciency F	actor: 0.677		Ha	mmer	Туре:	Autom	atic 🛛	Hydraulic □	Rope & Cathead □		
MD = U = T MU = V = F	plit Spoon Unsucces hin Wall Tu Unsucces ield Vane S	sful Split Sp ube Sample sful Thin Wa Shear Test,	all Tube Sample / PP = Pocket Pe ane Shear Test A	RC = Rolle Attempt	id Stem / llow Stem er Cone eight of 1 Weight o	Auger n Auger 140 lb. Ha of Rods o	r Casing	S _{u(l:} q _p = N-ur Ham N ₆₀	ab) = Lat Unconfi correcte mer Effi = SPT N	emolded Field Vane Undrained She Vane Undrained Shear Strength (hed Compressive Strength (ksf) d = Raw Field SPT N-value iency Factor = Rig Specific Annua -uncorrected Corrected for Hamme ner Efficiency Factor/60%)*N-unco	psf)	ater Content, p	s
		_		Sample Information				ı	1				Laboratory
Depth (ft.)	Sample No.	Pen./Rec. (in.)	Sample Depth (ft.)	Blows (/6 in.) Shear Strength (psf) or RQD (%)	N-uncorrected	09 _N	Casing Blows	Elevation (ft.)	Graphic Log	Visual Desc	ription and Remarks		Testing Results/ AASHTO and Unified Class
25	R3	18/26	25.4 - 26.9	RQD = 92%			NQ CORE	214.5		R3: Grey, aphanitic to fine dipping at steep to vertical a oxidation on joint surfaces, surfaces. Recovery=100%	angles, close, tight to ope	n, slight	
										Rock Quality=Excellent R3 Core Times (min:sec): 2	5.4-26.4' (3:17); 26.4-26.	9' (1:27)	
- 30 -										Bottom of Exploration a	t 26.9 feet below ground		
30													
- 35 -													
- 40 -													
- 45 -													
50													
Rem	narks:												
Strati	fication line	s represen	t approximate bou	undaries between soil types;	transitio	ns may b	e gradual.				Page 2 of 2		
* Wat	er level rea	idings have	been made at tin	nes and under conditions sta	ated. Gre	oundwate	er fluctuatio	ons may	occur du	to conditions other	Boring No	· BB-W	WR-104

]	Main	e Dep	artment	of Transport	ation	1	Project:	Repla	cement	t of I-95 Bridges over Webb	Boring No.:	BB-WW	/R-201
		- 5	Soil/Rock Exp US CUSTOM	oloration Log			Locatio	Road n: Wa	terville	, Maine	WIN:	2190	0.00
Drill	er:		New England	Boring Contractors	Flev	vation	(ft.)	229	6		Auger ID/OD:		
	rator:		M. Porter	Boring Contractors	Date		(16.7)		VD 88		Sampler:	Split Spoon-1.	375 in ID
	ged By:		T. Jones			Type:	•			53 Track Mount	Hammer Wt./Fall:		
Ť	Start/Fi	inish:	10-7-2021/10	D-8-2021	+		lethod:			sh Boring	Core Barrel:	NQ-2.0 in. ID	1011100 1111
	ng Loca		120+26.7 NB		_	ing IC				. ID/NW-3.0 in. ID	Water Level*:	2.8 ft	
			actor: 0.922		_	nmer '		Autom			Rope & Cathead □		
MD = U = T MU = V = F	plit Spoon Unsuccess hin Wall Tu Unsuccess ield Vane S	sful Split Spo be Sample sful Thin Wa Shear Test,		RC = Rolle Attempt WOH = W enetrometer WOR/C =	id Stem Au low Stem er Cone eight of 14 Weight of	uger Auger l0lb. Ha Rods or	q N mmer H r Casing N	u(lab) = p = Unco l-uncorre lammer l ₆₀ = SP	Lab Var onfined (ected = F Efficience T N-unc	ded Field Vane Undrained Shear St te Undrained Shear Strength (psf) Compressive Strength (ksf) Raw Field SPT N-value y Factor = Rig Specific Annual Calit orrected Corrected for Hammer Efficiency Factor/60%)*N-uncorrecte	WC = Water LL = Liquid I PL = Plastic pration Value PI = Plasticit ciency G = Grain Si	Content, percent Limit Limit y Index ze Analysis	gth (psf) Laboratory
Depth (ft.)	Sample No.	Pen./Rec. (in.)	Sample Depth (ft.)	Blows (/6 in.) Shear Strength (psf) or RQD (%)	N-uncorrected		ing vs	Elevation (ft.)	Graphic Log	Visual Desci	ription and Remarks		Testing Results/ AASHTO and
Dep	San	Pen	San (ft.)	Blov She Stre (psf or R	ž	N ₆₀	Casing Blows	(ft.)	Gra				Unified Class.
0	1D	24/1	0.0 - 2.0			PUSH		,,,,,,	Dark brown, wet, very soft, -TOPSOIL-(ML)	Sandy SILT, trace roc			
	2D/A	24/12	2.0 - 4.0	17	26		227.3		Dark brown, wet, very stiff, sand, trace medium sand, trace_rMARINE DEPOSIT-(ML)	ace roots			
- 5 -	3D 24/10 4.0 - 6.0 10/12/11/15 2					35		225.6		Brown, moist, medium dens gravel -MARINE DEPOSIT-(SM)		SAND, little	
		3D 24/10 4.0 - 6.0 10/12/11/15 2					80			Brown-grey, moist, hard, SI fine gravel, moderately bone	LT, little fine to coarse	sand, trace	
							95	221.6		-GLACIAL TILL-(ML) Note: Wash fluid at 7 ft con			
							83 79			Note: Wash fluid at 8 ft con contains gravel.			
- 10 -	4D	24/14	10.0 - 12.0	8/8/7/17	15	23	34	219.6		Brown, wet, very stiff, Sand -GLACIAL TILL-(ML)	ly SILT, little gravel	— — —10.0-	G#644201 A-4(0), ML
							20						
							34						
- 15 -	5D	19/19	15.0 - 16.6	17/19/45/50(1")	64	98	27			Grey, wet, hard, fine Sandy trace fine gravel, well bonder		coarse sand,	
	R1	58/45	16.9 - 21.7	RQD = 66%			RC NQ CORE	213.0		-GLACIAL TILL-(ML) Top of Bedrock El. 213.0 Note: Advanced roller cone	to 16.6 ft. slaping bed	16.6-	
							CORL			core at 16.9 ft. R1: Grey, aphanitic, PHYLI horizontal to low angles, tig very close to close, smooth steeply dipping secondary is	LITE, hard, fresh. Joint the to open, silt coating to rough, planar to step	s dipping at on open joints,	
- 20 -										Rock Quality=Fair Recovery=78% R1 Core Times (min.sec): 1		8.9' (0:54):	
	R2	60/60	21.7 - 26.7	RQD = 73%						18.9-19.9' (1:08); 19.9-20.9' R2: Grey, aphanitic, PHYLl horizontal to low angles, ve open, smooth, planar to step	' (1:48); 20.9-21.9' (2:2 LITE, hard, fresh. Joint ry close to moderately	3) s dipping at	
										Rock Quality=Fair Recovery=100% R2 Core Times (min:sec): 2	•	23.7' (1:02);	
25 Ren	narks:		1				ı V		ELT.HE.	<u>u</u>			
											- I - · · · · ·		
Strati	fication line	e ronrocont	annrovimato hou	indaries hetween soil tynes:	trancition	e may h	o aradual				Page 1 of 2		

I	Main	e Dep	artment	of Transport	ation	Project			t of I-95 Bridges over Webb	Boring No.:	BB-W	WR-201
			Soil/Rock Exp US CUSTOM			Locatio	Road on: Wa		, Maine	WIN:	2190	00.00
Drill	er:		New England	Boring Contractors	Elevatio	l n (ft.)	229	0.6		Auger ID/OD:		
	rator:		M. Porter		Datum:			VD 88		Sampler:		on-1.375 in. ID
Log	ged By:		T. Jones		Rig Type):	Mo	bile B-5	53 Track Mount	Hammer Wt./Fall:	SS/HW/N	W-140#/30 in.
Date	Start/F	inish:	10-7-2021/10	0-8-2021	Drilling I	Method:	Cas	ed Was	sh Boring	Core Barrel:	NQ-2.0 in	. ID
Bori	ng Loca	ation:	120+26.7 NB	3, 36.1 LT	Casing I	D/OD:	HW	/-4.0 in.	. ID/NW-3.0 in. ID	Water Level*:	2.8 ft	
_		iciency F	actor: 0.922		Hammer	Type:		natic 🛛	Hydraulic □	Rope & Cathead □		
MD = U = T MU = V = Fi	plit Spoon Unsuccess hin Wall Tu Unsuccess ield Vane S	sful Split Sp ube Sample sful Thin W Shear Test,	all Tube Sample / PP = Pocket Pe ane Shear Test A	SSA = Soli MSA = Holl RC = Rolle Attempt WOH = We enetrometer WOR/C = WOH/E = WO	Core Sample d Stem Auger ow Stem Auger r Cone eight of 140 lb. H Veight of Rods of	or Casing	S _{u(l:} q _p = N-ur Ham N ₆₀	ab) = Lal = Unconfi ncorrecte nmer Effi = SPT N	emolded Field Vane Undrained She b Vane Undrained Shear Strength (ined Compressive Strength (ksf) ad = Raw Field SPT N-value ciency Factor = Rig Specific Annua N-uncorrected Corrected for Hamme mer Efficiency Factor/60%)*N-unco	psf)	ater Content, p	
		·		Sample Information	70		ĺ	1				Laboratory
5 Depth (ft.)	Sample No.	Pen./Rec. (in.)	Sample Depth (ft.)	Blows (/6 in.) Shear Strength (psf) or RQD (%)	N-uncorrected	Casing Blows	Elevation (ft.)	Graphic Log		ription and Remarks		Testing Results/ AASHTO and Unified Class.
25						NQ CORE			23.7-24.7' (1:01); 24.7-25.	/ (1:03); 25.7-26.7 (1:09)		
						+	202.9		Bottom of Exploration a	t 26.7 feet below ground	26.7-	
						-			Ü			
- 30 -												
							1					
- 35 -												
							1					
- 40 -												
40												
							-					
							-					
- 45 -												
50								L				
	iarks:	es represen	t approximate bou	undaries between soil types;	transitions may	be gradual.				Page 2 of 2		
* Wat	er level rea	adings have	been made at tin	nes and under conditions sta nts were made.	ted. Groundwa	ter fluctuation	ons may	occur du	e to conditions other	Boring No.	.: BB-W	WR-201
uiai	. anose pre	com at tile	o measuremen	HOIO IIIAUG.						_209 140	. JJ- 11	., 1. 201

]	Main	e Dep	artment	of Transport	tation		Project:	Repla	iceme	at of I-95 Bridges over Webb	Boring No.:	BB-WV	VR-202
		- 1	Soil/Rock Exp US CUSTOM	loration Log			Location	Road n: Wa	tervill	e, Maine	WIN:	2190	00.00
Drill	er:		New England	Boring Contractors	Eleva	tion	(ft.)	226	.0		Auger ID/OD:		
Ope	rator:		M. Porter		Datur	n:		NA	VD 8		Sampler:	Split Spoon-1	.375 in. ID
Log	ged By:		T. Jones		Rig T	ype		Mo	bile B	53 Track Mount	Hammer Wt./Fall:	SS/HW/NW-1	40#/30 in.
Date	Start/F	inish:	10-8-2021/10-	-12-2021	Drillir	ng M	lethod:	Cas	ed W	sh Boring	Core Barrel:	NQ-2.0 in. ID	
Bori	ng Loca	ation:	Sta. 121+0.71	NB, 38.1 RT	Casin	ıg IC	/OD:	HW	′-4.0 i	n. ID/NW-3.0 in. ID	Water Level*:	0.2 ft	
Ham	mer Eff	iciency F	actor: 0.922		Hamn	ner '	Туре:	Autom	atic 🗵	Hydraulic □	Rope & Cathead □		
MD = U = T MU = V = F	plit Spoon Unsucces hin Wall Tu Unsucces ield Vane S	sful Split Sp ube Sample sful Thin Wa Shear Test,	oon Sample Atter all Tube Sample A PP = Pocket Pe ne Shear Test At	SSA = Sol mpt	Core Sample id Stem Augi llow Stem Au er Cone eight of 140ll Weight of One	er uger b. Ha ods or	q q N mmer H	u(lab) = p = Unco l-uncorre lammer l ₆₀ = SP	Lab V onfined ected = Efficien T N-ur	ilded Field Vane Undrained Shear S ne Undrained Shear Strength (psf) Compressive Strength (ksf) Raw Field SPT N-value cy Factor = Rig Specific Annual Cal corrected for Hammer Eff Efficiency Factor/60%)*N-uncorrect	WC = Water LL = Liquid I PL = Plastic ibration Value PI = Plasticit ficiency G = Grain Si	Limit y Index ze Analysis	gth (psf)
				Sample Information					-				Laboratory
Depth (ft.)	Sample No.	Pen./Rec. (in.)	Sample Depth (ft.)	Blows (/6 in.) Shear Strength (psf) or RQD (%)	N-uncorrected	N ₆₀	Casing Blows	Elevation (ft.)	Graphic Log		ription and Remarks		Testing Results/ AASHTO and Unified Class.
0	1D/A	24/12	0.0 - 2.0	WOH/1/1/2	2	3	PUSH	225.6		Dark brown, wet, very loos fine gravel, trace roots -TOPSOIL-(SM)	e, fine to coarse SAND.	, little silt, trace	G#644202 A-4(0), ML
	2D	24/14	2.0 - 4.0	-MARINE DEPOSIT-(ML)					nd, trace fine				
	2D/A	24/14	40.60	6/7/9/21	16	25	112	221.6		Grey, mottled, moist, very -MARINE DEPOSIT-(ML) Similar to 2D above			
- 5 -	3D/A	24/14	4.0 - 6.0	0/ //9/21	16	25	199	221.0		Brown, wet, very stiff, SIL to coarse gravel	milar to 2D above own, wet, very stiff, SILT, trace fine to coarse sand, trace fi coarse gravel		
							364	219.8	1741	-GLACIAL TILL-(ML)		— ——6.2-	
							170			Note: Washed ahead of cas encountered.	ing from 6.4 to 8 ft, cob	bles	
							79						
- 10 -							51			Grey, wet, very dense, San	dy GRAVEL little silt	noorly graded	
	4D	24/4	10.0 - 12.0	30/23/14/12	37	57	13			-GLACIAL TILL-(GM)	ay ora r 22, mae sna,	poorry graded	
							35						
							40						
- 15 -							85	210.9				15.1	
	5D —R1	1/0 60/60	15.0 - 15.1 15.3 - 20.3	50(1") RQD = 78%			62 RC NQ	210.7		Note: Spoon refusal on pro Advance roller bit to 15.3 f			
							CORE			Top of Bedrock El.210.7 R1: Grey, aphanitic, PHYL low to moderate angles, tig planar to stepped. One secc approximately 16.3 ft. Occ. 1/8-in. thick).	ht, close to moderately ondary joint dipping at s	close, rough, teep angle at	
- 20 -	R2	60/58	20.3 - 25.3	RQD = 85%						Rock Quality=Good Recovery=100% R1 Core Times (min:sec):			
										17.3-18.3' (0:56); 18.3-19.3 R2: Grey, aphanitic, PHYL horizontal to low angles, op	3' (0:58); 19.3-20.3' (1:0 LITE, hard, fresh. Joint	8) s dipping al	
										to rough. planar to undulati 23.7 to 23.9 ft. Occasional in. thick). High angle folial	ng. Fractured zone at 2 quartz veins (approxima	to 2I.5 ft and	
25										Rock Quality=Good Recovery=97% R2 Core Times (min:sec): 2		(2.3' (0.58):	
Rem	arks:						. w I		******	w 122 0010 1 miles (mm. 500). 2	(1.01), 21.5-2	5 (5.55),	

Stratification lines represent approximate boundaries between soil types; transitions may be gradual.

* Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those present at the time measurements were made.

Page 1 of 2

I	Main			of Transp	ortation		Project	: Repla Road	cement	of I-95 Bridges over Webb	Boring No.:	BB-W	WR-202_
			Soil/Rock Exp US CUSTOM				Locatio		terville	, Maine	WIN:	219	00.00
Drille	er:			Boring Contractor	s Elev	 ation	(ft.)	226.	.0		Auger ID/OD:		
	rator:		M. Porter		Datu		·/		VD 88		Sampler:		on-1.375 in. ID
	ged By:		T. Jones			Гуре:				53 Track Mount	Hammer Wt./Fall:		IW-140#/30 in.
	Start/F	inish:	10-8-2021/10	0-12-2021			ethod:			h Boring	Core Barrel:	NQ-2.0 ir	
Bori	ng Loca	ation:	Sta. 121+0.7	NB, 38.1 RT		ng ID				ID/NW-3.0 in. ID	Water Level*:	0.2 ft	
Ham	mer Eff	iciency l	actor: 0.922		Ham	mer 1	Гуре:	Autom	atic 🗵	Hydraulic □	Rope & Cathead □		
MD = U = TI MU = V = Fi	plit Spoon Unsucces: hin Wall Tu Unsucces: eld Vane S	sful Split Sp ube Sample sful Thin W Shear Test,	all Tube Sample / PP = Pocket Po ane Shear Test A	mpt SSA RC : Attempt WOI enetrometer WOI ttempt WO	Rock Core Sampl = Solid Stem Au = Hollow Stem A = Roller Cone H = Weight of 14C R/C = Weight of Or	ger luger) lb. Hai Rods or	Casing	S _{u(la} q _p = N-un Ham N ₆₀	ab) = La Unconfi correcte mer Effi = SPT N	emolded Field Vane Undrained Sh b Vane Undrained Shear Strength ned Compressive Strength (ksf) id = Raw Field SPT N-value ciency Factor = Rig Specific Annua I-uncorrected Corrected for Hamm mer Efficiency Factor/60%)*N-uncc	(psf) WC = W	ater Content, p	
		$\overline{}$		Sample Informa					ł				Laboratory
Depth (ft.)	Sample No.	Pen./Rec. (in.)	Sample Depth (ft.)	Blows (/6 in.) Shear Strength (psf) or RQD (%)	N-uncorrected	N ₆₀	Casing Blows	Elevation (ft.)	Graphic Log	Visual Desc	ription and Remarks		Testing Results/ AASHTO and Unified Class.
								200.7		Bottom of Exploration a	at 25.3 feet below ground	25.3-	
- 30 -													
- 35 -													
- 40 -													
- 45 -													
								1					
50 Rem	arks:							<u> </u>		l			
Stratif	ication line	es represen	t approximate bou	undaries between soil	types; transitions	may be	e gradual.				Page 2 of 2		
			been made at tin time measuremer	mes and under condition onts were made.	ons stated. Grou	ndwate	r fluctuatio	ons may o	occur du	e to conditions other	Boring No.	.: BB-W	WR-202

ľ	Main	e Dep	artment	of Transport	atio	n	Project:			ent (of I-95 Bridges over Webb	Boring No.:	BB-WW	VR-203
			Soil/Rock Exp US CUSTOM				Locatio	Road n: Wa		ille, I	Maine	WIN:	2189	94.00
Drill	er:		New England	Boring Contractors	EI	evation	(ft.)	237	.7			Auger ID/OD:		
Ope	rator:		M. Porter		Da	atum:		NA	VD 8	88		Sampler:	Split Spoon-1	.375 in. ID
Log	ged By:		T. Jones		Ri	ig Type	:	Mol	bile I	B-53	3 Track Mount	Hammer Wt./Fall:	SS/HW/NW-1	40#/30 in.
Date	Start/F	inish:	10-7-2021/10	-7-2021	Di	rilling N	lethod:	Cas	ed W	Vash	Boring	Core Barrel:	NQ-2.0 in. ID	
Bori	ng Loca	tion:	Sta. 219+84.6	5 SB, 33.3 LT	Ca	asing IC	D/OD:	HW	7-4.0	in.	ID/NW-3.0 in. ID	Water Level*:	7.3 ft	
Ham	mer Eff	iciency F	actor: 0.922		Ha	ammer	Type:	Autom	atic [Ø	Hydraulic □	Rope & Cathead □		
MD = U = TI MU = V = Fi	plit Spoon Unsuccess nin Wall Tu Unsuccess eld Vane S	sful Split Spo be Sample sful Thin Wa Shear Test,	oon Sample Atter III Tube Sample <i>F</i> PP = Pocket Pe ne Shear Test Af	RC = Rolle Attempt WOH = We enetrometer WOR/C = V	id Stem low Ster or Cone eight of Weight	Auger m Auger 140lb. Ha of Rods o	q N Immer H r Casing N	u(lab) = p = Unco I-uncorre lammer I ₆₀ = SP	Lab \ onfine ected Efficie T N-u	Vane ed Co = Ra ency unco	ad Field Vane Undrained Shear St Undrained Shear Strength (psf) mpressive Strength (ksf) av Field SPT N-value Factor = Rig Specific Annual Calii rected Corrected for Hammer Effi ficiency Factor/60%)*N-uncorrecte	WC = Water LL = Liquid I PL = Plastic pration Value PI = Plasticit ciency G = Grain Si	Limit y Index ze Analysis	gth (psf)
				Sample Information		1			┨					Laboratory
Depth (ft.)	Sample No.	Pen./Rec. (in.)	Sample Depth (ft.)	Blows (/6 in.) Shear Strength (psf) or RQD (%)	N-uncorrected	09 _N	Casing Blows	Elevation (ft.)	Granhir Log	Grapnic Log	Visual Desc	ription and Remarks		Testing Results/ AASHTO and Unified Class.
0	1D/A	24/11	0.0 - 2.0	2/1/1/11	2	3	PUSH	237.4			Dark brown, damp, soft, SII sand, trace fine gravel, trace -TOPSOIL-(ML)			
	2D/A	24/12	2.0 - 4.0	18	28		235.5			Brown, moist, soft, SILT, li -MARINE DEPOSIT-(ML) Brown, wet, very stiff, SILT		-0.3- ts	G#644203 A-4(0), ML	
	25	24/10	40.60	1/7/7/6	1.4	22	42				-MARINE DEPOSIT-(ML) Brown, moist, very stiff, SII		sand, little	
- 5 -	3D	24/18	4.0 - 6.0	1/7/7/5	14	22	35				gravel -GLACIAL TILL-(ML) Brown, wet, very stiff, SILT	Γ, trace weathered grav	el	
							64				-GLACIAL TILL-(ML) Note: Wash fluid contains s	ilt, some sand.		
							101	229.7	Щ	Щ				
							73				Note: Weathered rock fragn	nents at 8 ft, mixed in v	vith silt.	
- 10 -	4D	20/20	10.0 - 11.7	28/38/57/50(2")	95	146	129 RC				Brown-grey, wet, very dens	e, Silty fine SAND, we	athered rock	
		20/20	10.0 - 11.7	28/38/37/30(2)		140	RC				throughout. -GLACIAL TILL-(SM)			
								225.2			Top of Bedrock El. 225.2		12.5	
	R1	60/58	13.0 - 18.0	RQD = 97%			NQ CORE				Note: Advance rollerbit to 1 R1: Grey, aphanitic, PHYLL moderate angles, moderately	LITE, hard, fresh. Joint		
- 15 -											Frequent quartz veins (appron joint surfaces. Secondary planar, rough.			
											Rock Quality=Excellent Rccovery=97%		5 OV. 15.	
											R1 Core Times(min:sec): 13 15.0-16.0' (1:11); 16.0-17.0	'(1: 14); 17.0-18.0'(1:	19)	
	R2	60/60	18.0 - 23.0	RQD = 97%							R2: Grey, aphanitic, PHYLl moderate angles, close to w sand coating on joint surfac tight. Occasional thin quartz	ide, fresh to slightly we e, smooth to rough, pla	eathered, silty nar to stepped,	
- 20 -				_							Rock Quality=Excellent Recovery=100% R2 Core Times (min:sec): 1			
											20.0-21.0' (1:14); 21.0-22.0			
							$+$ \forall $-$	214.7		1/2	Bottom of Exploration a	t 23.0 feet below grou	23.0-	
											Doctor of Dapior and I a	group delon grou		
25 Rem	arks:					1								

	Main	e Dep	artment	of Transport	atio	n	Project	: Repla	cement	of I-95 Bridges over Webb	Boring No.:	BB-WW	/R-204
			Soil/Rock Exp US CUSTOM				Locatio	Road on: Wa	terville,	Maine	WIN:	2189	94.00
Dril	ler:		New England	Boring Contractors	Ele	evation	(ft.)	233	.3		Auger ID/OD:	SSA-5.0-in. O	D
Оре	rator:		M. Porter		Da	tum:		NA	VD 88		Sampler:	Split Spoon-1.	.375 in. ID
Log	ged By:		T. Jones		Rig	g Type		Mol	bile B-5	3 Track Mount	Hammer Wt./Fall:	SS/NW-140#/	30 in.
Dat	e Start/F	inish:	10-12-2021/1	0-12-2021	Dri	illing N	lethod:	Cas	ed Wasl	n Boring	Core Barrel:	NQ-2.0 in. ID	
Bor	ing Loca	ation:	Sta. 220+63.3	SB, 38.6 RT	Ca	sing IE)/OD:	NW	'-3.0 in.	ID	Water Level*:	1.3 ft	
		iciency F	actor: 0.922			mmer		Autom			Rope & Cathead		
D = 9 MD = U = 1 MU = V = F	hin Wall To Unsucces ield Vane	sful Split Sp ube Sample sful Thin Wa Shear Test,	all Tube Sample A PP = Pocket Pe ine Shear Test A	RC = Rolle Attempt WOH = We enetrometer WOR/C = WO1P = W	d Stem / ow Sten r Cone eight of 1 Weight o	Auger n Auger I 40lb. Ha of Rods of	mmer I	Su(lab) = Ap = Unco N-uncorre Hammer N ₆₀ = SP	Lab Vand onfined C ected = R Efficiency T N-uncc	ed Field Vane Undrained Shear S • Undrained Shear Strength (psf) ompressive Strength (ksf) aw Field SPT N-value Factor = Rig Specific Annual Calii rrrected Corrected for Hammer Effi ficiency Factor/60%)*N-uncorrecte	WC = Water LL = Liquid I PL = Plastic bration Value PI = Plastici ciency G = Grain S	Content, percent Limit Limit y Index ze Analysis	gth (psf)
				Sample Information				1	-				Laboratory
Depth (ft.)	Sample No.	Pen./Rec. (in.)	Sample Depth (ft.)	Blows (/6 in.) Shear Strength (psf) or RQD (%)	N-uncorrected	09 _N	Casing Blows	Elevation (ft.)	Graphic Log	Visual Desc	ription and Remarks		Testing Results/ AASHTO and Unified Class.
0	1D	24/8	0.0 - 2.0	3	5	SSA	232.3		Grey-brown, damp, soft, SI coarse gravel, trace organic \-TOPSOIL/FILL-(ML)				
	2D/A	24/16	2.0 - 4.0	5/13/11/15	24	37				Grey-brown mottled, damp, sand	hard, SILT, trace fine	to medium	
								230.3		-MARINE DEPOSIT-(ML) Brown, damp, dense, Silty t		3.0-	
_	3D/A	24/21	4.0 - 6.0	9/11/16/15	27	41		229.3		gravel -GLACIAL TILL-(SM)	mic to inculum SAND,	ittic coarse	
- 5							29	228.3		Brown, damp, hard, SILT, latrace medium to coarse sand		— — ——4.0- nrse gravel,	G#644204 A-1-b(0), GM
							58			-GLACIAL TILL-(ML) Brown, damp, dense, fine C		5.0-	
							88			some silt, trace coarse grave -GLACIAL TILL-(GM)		coarse sand,	
							35			Note: Casing driving become from 8.3 to 11 ft.	nes hard at 8 ft. Cored t	hrough boulder	
- 10							6	-					
							16	221.2				12.0	
	4D	17/8	12.0 - 13.4	9/60/50(5")			23	221.3		Grey, wet, hard, SILT, some sand, trace fine to coarse gr		— — —12.0- trace coarse	
	R1	30/26	13.7 - 16.2	RQD = 40%			RC NQ	219.9		-GLACIAL TILL-(ML) Top of Probable Bedrock E	1. 219.9	13.4	
- 15							CORE			Note: Advance roller cone t R1: Grey, aphanilic, PHYL	o 13.7 ft, begin NQ con LITE, hard, fresh. Joint	s dipping at	
	R2	24/18	16.2 - 18.2	RQD = 0%						low to moderate angles, tigl stepped. Occasional quartz 16.2 ft. Rock Mass=Poor			
										Recovery=87% R1 Core Times (min:sec): 1 15.7-16.2' (1:30)	3.7-14.7' (1:02); 14.7-1	5.7' (1:31);	
	R3	24/20	18.2 - 20.2	RQD = 46%						R2: Grey, aphanitic, PHYL weathered. Joints dipping a undulating. Secondary verti	t low angles, open, clos	e, rough,	
- 20	R4	60/60	20.2 - 25.2	RQD = 92%						and bottom of run. Rock Mass=Very Poor	car Joint. Friginy fractu	red zones at top	
										Recovery=75% R2 Core Times (min:sec): 1 R3: Similar to R2, secondar 19.2 to 20.2 ft.			
								1		Rock Mass=Poor Recovery=83%			
25										R3 Core Times (min:sec): 1 R4: Grey, aphanitic, PHYL horizontal to low angles, tig	LITE, hard, fresh. Joint	s dipping at	
Ren	narks:												

I	Main	e Dep	artment	t of Transport	tatio	n	Project	: Repla	cement	of I-95 Bridges over Webb	Boring No.:	BB-W	WR-204
				ploration Log			Locatio	Road n: Wat	erville.	, Maine	WIN:	218	94.00
			US CUSTON	MARY UNITS									94.00
Drill	er:		New Englan	d Boring Contractors	Ele	evation	າ (ft.)	233.	.3		Auger ID/OD:	SSA-5.0-	in. OD
H	rator:		M. Porter		_	tum:			VD 88		Sampler:		on-1.375 in. ID
	ged By:		T. Jones	10.10.0001		g Type				53 Track Mount	Hammer Wt./Fall:		40#/30 in.
	Start/F		10-12-2021/		-		/lethod:			h Boring	Core Barrel:	NQ-2.0 ir	1. ID
	ng Loca		Factor: 0.922	.3 SB, 38.6 RT	_	sing II mmer		Autom	-3.0 in.		Water Level*: Rope & Cathead □	1.3 ft	
Defini	tions:		Factor. 0.922	R = Rock	Core Sar	mple	туре.	S _u =	Peak/R	emolded Field Vane Undrained She	ear Strength (psf) T _V = Pock		ear Strength (psf)
MD = U = T MU = V = F	hin Wall T Unsucces ield Vane :	ssful Split S ube Sample ssful Thin W Shear Test	poon Sample Atte e /all Tube Sample , PP = Pocket F <u>′ane Shear Test /</u>	RC = Rolle Attempt	llow Ster er Cone eight of Weight o	n Auger 140 lb. H of Rods c	r Casing	q _p `= N-un Ham N ₆₀	Unconfi correcte mer Effi = SPT N	b Vane Undrained Shear Strength (ned Compressive Strength (ksf) id = Raw Field SPT N-value ciency Factor = Rig Specific Annual I-uncorrected Corrected for Hamme mer Efficiency Factor/60%)*N-uncoi	$\begin{array}{c} LL = Liq \\ PL = Pla \\ Calibration Value \\ PI = Pla \\ F Efficiency \\ G = Gra \end{array}$	dater Content, puid Limit astic Limit stick Limit sticity Index in Size Analysisolidation Test	s
		<u>-</u>	ے	Sample Information	70			i	ł				Laboratory
Depth (ft.)	Sample No.	Pen./Rec. (in.)	Sample Depth (ft.)	Blows (/6 in.) Shear Strength (psf) or RQD (%)	N-uncorrected	N ₆₀	Casing Blows	Elevation (ft.)	Graphic Log		ription and Remarks		Testing Results/ AASHTO and Unified Class
25							NQ CORE	208.1	Mes	smooth to rough, planar to u and veins up to 1-in. thick. I Rock Mass=Excellent Recovery=100% R4 Core Times (min:sec): 2	High angle foliation. 0.2-21.2' (2:20); 21.2-22.	2' (2:29);	
			1							22.2-23.2' (2:46); 23.2-24.2	(2:10); 24.2-25.2' (2:23)	25.2-	
									Bottom of Exploration a	t 25.2 feet below ground	surface.		
- 30 -							-						
							-						
								1					
								1					
- 35 -													
								1					
- 40 -								-					
								1					
- 45 -													
								-					
50													
Rem	iarks:												
				oundaries between soil types							Page 2 of 2		
* Wat thar	er level rea those pre	adings have esent at the	e been made at ti time measureme	imes and under conditions st ents were made.	ated. Gr	oundwat	er fluctuation	ons may o	ccur du	e to conditions other	Boring No	.: BB-W	WR-204

]	Main	e Dep	artment	of Transporta	ation		Project	: Repla	cement	t of I-95 Bridges over Webb	Boring No.: BB-WV	VR-205
		- 1	Soil/Rock Exp US CUSTOM	loration Log			Locatio	Road on: Wa		, Maine	WIN: 2190	00.00
Drill	or:	•		Boring Contractors	Elevat	lion	(ft)	243	1		Auger ID/OD: HSA 2.5 in. II	D
_	rator:		M. Porter	Bornig Contractors	Datum		(11.)		VD 88		Sampler: Split Spoon-1	
-	ged By:		T. Jones		Rig Ty		,			53 Track Mount	Hammer Wt./Fall: SS-140#/30 in	
_	Start/F	inish:	10-6-2021/10	-6-2021	+	_	ethod:			em Auger	Core Barrel:	1.
	ing Loca			NB DIV, 13.8 RT	Casing					, rager	Water Level*: 2.1 ft	
			actor: 0.922	11.2 211, 12.0 101	Hamm	_		Auton	atic 🕅	Hydraulic □	Rope & Cathead □	
Defini	itions:			R = Rock C	ore Sample			S., = Pea	k/Remol	ded Field Vane Undrained Shear St	rength (psf) T _v = Pocket Torvane Shear Stren	
MD = U = T MU = V = F	hin Wall Tu Unsucces ield Vane S	sful Split Sp ube Sample sful Thin Wa Shear Test,	all Tube Sample A PP = Pocket Pe ane Shear Test Al	mpt HSA = Hollo	I Stem Auge ow Stem Aug Cone ight of 140lb Veight of Roceight of One	ger . Har ds or	mmer I Casing I	q _p = Unc N-uncorr Hammer N ₆₀ = SF	onfined (ected = F Efficienc T N-unc	ne Undrained Shear Strength (psf) Compressive Strength (ksf) Raw Field SPT N-value y Factor = Rig Specific Annual Calib orrected Corrected for Hammer Efficificiency Factor/60%)*N-uncorrecte	ciency G = Grain Size Analysis	<u> </u>
		(in.)			ō				1			Laboratory Testing
Depth (ft.)	Sample No.	Pen./Rec. (ir	Sample Depth (ft.)	Blows (/6 in.) Shear Strength (psf) or RQD (%)	N-uncorrected	09 _N	Casing Blows	Elevation (ft.)	Graphic Log		iption and Remarks	Results/ AASHTO and Unified Class.
0	1D/A	24/14	0.0 - 2.0	1/1/2/3	3	5	H\$A	243.3 242.4		Dark brown, dry, medium st -ROOTMAT-(ML)	iff, SILT, trace organics 0.1	G#644205
	2D	24/24	20.40	2/2/5/4	0 1	12				Grey-brown, damp, medium -TOPSOIL-(ML)	stiff, SILT, roots	A-4(0), ML
	2D	24/24	2.0 - 4.0	2/3/5/4	8 1	12		239.4		Grey-brown, damp, stiff, SII reworked native soil -FILL-(ML)	LT, trace fine to medium sand,	
- 5 -	3D	24/24	4.0 - 6.0	2/4/5/8	9 1	4		-		Grey-brown mottled, damp, -MARINE DEPOSIT-(ML)	stiff, SILT	
								-				
- 10 -										Grey-brown mottled, mediu	m stiff, SILT	
	4D	24/24	10.0 - 12.0	2/2/3/3	5	8		-		-MARINE DEPOSIT-(ML)		
							\ /					
							\mathbb{H}	229.4		Note: Drill action indicates a	14.0 gravel from 14 to 14.8 ft.	
- 15 -	5D	24/18	15.0 - 17.0	8/6/4/12	10 1	15	'				ne fine sand, trace medium to coarse avel, well bonded, cobble in tip	
								226.4		, ,	17.0 teet below ground surface.	
								-		No Refusal	17.00 recer below ground surface.	
- 20 -								-				
. 25 Re m	l <u>arks:</u>									<u>l</u>		
Strati	fication line	es represent	approximate bou	indaries between soil types; t	transitions m	nay b	e gradual.				Page 1 of 1	
* Wat	er level rea	adings have	been made at tin	nes and under conditions stat	ted. Ground	lwate	r fluctuation	ons may	occur du	e to conditions other	Boring No.: BB-W	WR-205
thar	n those pre	sent at the t	ime measuremer	its were made.							DOTTING NO.: BB-W	W IX-∠UD

ľ	Main	e Dep	artment	of Transport	atio	n	Project	: Repla	acemen	t of I-95 Bridges over Webb	Boring No.:	BB-WW	/R-206
		- 5	Soil/Rock Exp US CUSTOM	oloration Log			Locatio	Road			WIN:	2190	00.00
Drill	er:		New England	Boring Contractors	Ele	evation	(ft.)	243	.2		Auger ID/OD:	HSA-2.5 in. II)
	rator:		M. Porter		_	tum:	ν,		VD 88		Sampler:	Split Spoon-1.	
	ged By:		T. Jones		Rig	g Type	:			53 Track Mount	•	SS-140#/30 in	
	Start/Fi	inish:	10-6-2021/10	0-6-2021	_		lethod:			em Auger	Core Barrel:		
	ng Loca			4 NB DIV, 1.4 RT	_	sing ID					Water Level*:	Cave-in at 2 ft	- Dry
			actor: 0.922		_	mmer		Auton	natic 🏻	Hydraulic □	Rope & Cathead □		,
Defini D = S MD = U = TI MU =	tions: plit Spoon Unsuccess hin Wall Tu Unsuccess	Sample sful Split Spo lbe Sample sful Thin Wa	oon Sample Atte	R = Rock 0 SSA = Soli mpt HSA = Hol RC = Rolle Attempt WOH = We	d Stem / low Sten r Cone eight of 1	Auger n Auger 140lb. Ha	o I mmer I	Su(lab) = Ip = Unc N-uncorre Hammer	Lab Val onfined ected = I Efficiend	ded Field Vane Undrained Shear St re Undrained Shear Strength (psf) Compressive Strength (ksf) Raw Field SPT N-value ry Factor = Rig Specific Annual Calit	WC = Water LL = Liquid I PL = Plastic pration Value PI = Plasticit	Content, percent .imit Limit y Index	gth (psf)
			PP = Pocket Pe ne Shear Test A				r Casing I son I			corrected Corrected for Hammer Effi Efficiency Factor/60%)*N-uncorrecte			
				Sample Information									Laboratory
Depth (ft.)	Sample No.	Pen./Rec. (in.)	Sample Depth (ft.)	Blows (/6 in.) Shear Strength (psf) or RQD (%)	N-uncorrected	N ₆₀	Casing Blows	Elevation (ft.)	Graphic Log	Visual Desci	ription and Remarks		Testing Results/ AASHTO and Unified Class.
0	1D/A	24/16	0.0 - 2.0	1/4/5/6	9	14	H\$A] ,,,,		Dark brown, dry, stiff, SILT -TOPSOIL-(ML)	, trace roots		
								242.4				0.8	G#644206
										Brown, dry, stiff, SILT -MARINE DEPOSIT-(ML)			A-4(0), ML
	2D	24/24	2.0 - 4.0	4/5/4/5	9	14				Brown-grey mottled, damp, -MARINE DEPOSIT-(ML)		o medium sand	
								1		-MARINE DEI OSIT-(ML)			
										Brown-grey mottled, moist,	very stiff, SILT		
- 5 -	3D	24/24	4.0 - 6.0	3/5/7/9	12	18				-MARINE DEPOSIT-(ML)			
								İ					
								1					
10													
- 10 -	4D	24/24	10.0 - 12.0	3/3/4/4	7	11		1		Brown-grey, damp, stiff, Cl -MARINE DEPOSIT-(ML)		and partings	
				2,2, ,, ,				1		-MARINE DEPOSIT-(ML)			
							1 /	İ					
							\square						
							$\mathbb{I}^{-}\mathbb{V}$						
- 15 -	5D/A	24/22	15.0 - 17.0	7/11/11/15	22	34	,			Brown-grey, wet, hard, SIL -MARINE DEPOSIT-(ML)		ıgs	
								227.2		Brown-grey, moist, hard, SI fine to coarse gravel, well b		sand, trace	
								226.2		-GLACIAL TILL-(ML)			
										Bottom of Exploration a	t 17.0 feet below grou	———17.0- nd surface.	
										No Refusal			
										140 Relusui			
- 20 -								1					
								1					
25													
- 43	arks:		1							1			
Stratif	ication line	s represent	approximate bou	undaries between soil types;	transitio	ns may b	e gradual.				Page 1 of 1		

I	Main	e Depa	artment	of Transport	atio	n	Project	Repla	cement	of I-95 Bridges over Webb	Boring No.:	BB-WW	/R-207
			Soil/Rock Exp US CUSTOM	oloration Log			Locatio	Road n: Wa		Maine	WIN:	2190	00.00
Drill	er:		New England	Boring Contractors	Ele	evation	(ft.)	234	.3		Auger ID/OD:		
Ope	rator:		M. Porter	-	Da	tum:		NA	VD 88		Sampler:	Split Spoon-1.	375 in. ID
Log	ged By:		T. Jones		Rig	g Type:		Mo	bile B-5	3 Track Mount	Hammer Wt./Fall:	SS/HW-140#/	30 in.
Date	Start/Fi	nish:	10-6-2021/10	-6-2021	Dr	illing N	lethod:	Cas	ed Was	h Boring	Core Barrel:		
Bori	ng Loca	tion:	Sta. 418+71.7	7 NB DIV, 5.9 LT	Ca	sing IC	O/OD:	HW	7-4.0 in.	ID	Water Level*:	1.4 ft	
Ham	mer Effi	iciency F	actor: 0.922		Ha	mmer	Туре:	Auton	atic 🛛	Hydraulic □	Rope & Cathead		
	plit Spoon			R = Rock (SSA = Soli	d Stem	Auger	5	Su(lab) =	Lab Van	ded Field Vane Undrained Shear St e Undrained Shear Strength (psf)	WC = Water	Content, percent	gth (psf)
		sful Split Spo be Sample	oon Sample Atte	mpt HSA = Hol RC = Rolle		n Auger				Compressive Strength (ksf) law Field SPT N-value	LL = Liquid I PL = Plastic		
			II Tube Sample A				mmer F	Hammer Neo = SF	Efficienc	y Factor = Rig Specific Annual Calit prrected Corrected for Hammer Effi	oration Value PI = Plastici ciency G = Grain S		
			ne Shear Test A							fficiency Factor/60%)*N-uncorrecte			
		<u> </u>							†				Laboratory
·	9	; (in.)) Jept	ii. (%	ecte				l g	Vieual Dago	intion and Domarka		Testing Results/
ן) (ft	Je P	Rec] e	s (/6 r igth	2011		g "	ıtion	l je	Visual Desci	ription and Remarks		AASHTO
Depth (ft.)	Sample No.	Pen./Rec.	Sample Depth (ft.)	Blows (/6 in.) Shear Strength (psf) or RQD (%)	N-uncorrected	N ₆₀	Casing Blows	Elevation (ft.)	Graphic Log				and Unified Class.
0	1D/A	24/15	0.0 - 2.0	1/1/3/5	4	6	PUSH	233.6	133333	Dark brown, dry, medium st	tiff, SILT, trace roots		
								255.0		Brown-grey mottled, dry, m	edium stiff, SILT	0.7-	
	2D	24/19	2.0 - 4.0	6/6/7/14	13	20				-MARINE DEPOSIT-(ML) Brown-grey mottled, damp,		fine to coarse	G#644207
	2.0	24/19	2.0 - 4.0	0/0///14	13	20				sand, trace fine gravel -MARINE DEPOSIT-(ML)			A-4(0), ML
								230.3		-MARINE DEFOSIT-(ML)		4.0	
- 5 -	3D	24/15	4.0 - 6.0	5/9/11/13	20	31	35			Brown-grey, dry, hard, SIL7 gravel	Γ, trace fine sand, trace	fine to coarse	
3							36			-GLACIAL TILL-(ML)			
							46						
							49						
							60						
							103	225.3				- — — —9.0-	
- 10 -	4D	24/10	10.5 - 12.5	9/18/11/11	29	45	RC			Brown, wet, dense, fine to c	oarse GRAVEL, some	silt, little fine	
										to coarse sand -GLACIAL TILL-(GM)			
								221.3				13.0-	
								221.3		Note: Drill action and rock sweathered bedrock from 13			
- 15 -										-WEATHERED BEDROCK			
13								218.8		Note: Top of probable bedro		15.5	
										Bottom of Exploration a	t 15.5 feet below grou	nd surface.	
- 20 -													
25													
Rem	arks:												
0.					,						I B 1 2:		
Stratif	ication line	s represent	approximate bou	indaries between soil types;	transitio	ns may b	e gradual.				Page 1 of 1		

Maine Department of Transportation					Project: Replacement of I-95 Bridges over Webb					Boring No.:	BB-WW	/R-208	
			Soil/Rock Exp US CUSTOM			Loca	atio	Road n: Wa	terville	, Maine	WIN:	2190	0.00
Drill	er:		New England	Boring Contractors	Elevation	n (ft.)		233	.0		Auger ID/OD:	HSA-2.5 in. II)
Ope	rator:		M. Porter	-	Datum:			NA	VD 88		Sampler:	Split Spoon-1.	375 in. ID
Log	ged By:		T. Jones		Rig Typ	e:		Mol	oile B-	53 Track Mount	Hammer Wt./Fall:	SS-140#/30 in	
Date	Start/F	inish:	10-13-2021/1	0-13-2021	Drilling	Metho	d:	Hol	low St	em Auger	Core Barrel:		
Bori	ng Loca	ition:	Sta. 419+56.2	2 NB DIV, 0.8 LT	Casing	ID/OD:	:				Water Level*:	3.7 ft	
		iciency F	actor: 0.922		Hamme	r Type		Autom		Hydraulic □	Rope & Cathead		
MD = U = TI MU = V = Fi	plit Spoon Unsucces hin Wall Tu Unsucces ield Vane S	sful Split Sp ube Sample sful Thin Wa Shear Test,	all Tube Sample A PP = Pocket Pe ane Shear Test Al	SSA = Soli MSA = Holl RC = Rolle Attempt WOH = We enetrometer WOR/C = WOH/C = WO	ore Sample d Stem Auger ow Stem Auge r Cone eight of 140lb. I Veight of Rods eight of One P	Hammer or Casir	o N H ng N	Su(lab) = Ip = Unco N-uncorre Hammer N ₆₀ = SP	Lab Va onfined ected = Efficiend T N-und	Ided Field Vane Undrained Shear S ne Undrained Shear Strength (psf) Compressive Strength (ksf) Raw Field SPT N-value y Factor = Rig Specific Annual Calii corrected Corrected for Hammer Effi Efficiency Factor/60%)*N-uncorrecte	WC = Water LL = Liquid PL = Plastic pration Value PI = Plastic ciency G = Grain S	Content, percent Limit Limit ty Index ize Analysis	gth (psf)
				Sample Information					1				Laboratory
Depth (ft.)	Sample No.	Pen./Rec. (in.)	Sample Depth (ft.)	Blows (/6 in.) Shear Strength (psf) or RQD (%)	N-uncorrected	Casing	Blows	Elevation (ft.)	Graphic Log		ription and Remarks		Testing Results/ AASHTO and Unified Class.
0	1D	24/14	0.0 - 2.0	WOH/2/4/2	6 9	HS	A		,,,,,,	Dark brown, damp, stiff, SI roots -TOPSOIL-(ML)	LT, trace fine to mediu	m sand, trace	
	2D	24/18	2.0 - 4.0	4/7/22/8(3")	29 45			231.0		Grey-brown mottled, damp, sand, trace roots -MARINE DEPOSIT-(ML) Note: Cobbles/boulders at 3			G#644208 A-4(0), ML
- 5 -							/	228.0		Note: Cooles/bounders at 3	.7 It, offset borning 2 It		
)	3D	20/15	5.0 - 6.7	8/6/12/9(2")	18 28			226.1		Grey-brown, damp, very sti trace fine to coarse gravel, v -GLACIAL TILL-(ML) Note: Cobbles/boulders at 6 Bottom of Exploration a	vell bonded, wet in tip .9 ft. Refusal on proba	oarse sand, ble boulder. 6.9	
- 10 -													
- 15 -													
- 20 -													
25													
Stratif				undaries between soil types;		-				in to conditions after-	Page 1 of 1		
"Wate	er level rea those pre	adings have sent at the f	been made at tin time measuremer	nes and under conditions sta nts were made.	ted. Groundw	ater fluct	uatic	ns may o	occur di	ie to conditions other	Boring N	o.: BB-W	WR-208

I	Maine Department of Transportation				tion	Projec			nt of I-95 Bridges over Webb	Boring No.:	BB-WW	R-208A
			Soil/Rock Exp US CUSTOM			Locati	Roa i on: W		e, Maine	WIN:	2190	0.00
Drill	er:		New England	Boring Contractors	Elevation	ւ n (ft.)	23	2.9		Auger ID/OD:	HSA-2.5 in. II)
Ope	rator:		M. Porter		Datum:		N	AVD 88		Sampler:	Split Spoon-1.	375 in. ID
Log	ged By:		T. Jones		Rig Type	:	M	obile B	53 Track Mount	Hammer Wt./Fall:	SS-140#/30 in	
Date	Start/F	inish:	10-13-2021/1	0-14-2021	Drilling I	/lethod:	: Н	ollow S	em Auger	Core Barrel:		
Bori	ng Loca	tion:	Sta. 419+57.6	NB DIV, 3.3 RT	Casing I	D/OD:				Water Level*:	6.9 ft	
		iciency F	actor: 0.922		Hammer	Type:		matic ⊠		Rope & Cathead □		
MD = U = TI MU = V = Fi	plit Spoon Unsuccess hin Wall Tu Unsuccess ield Vane S	sful Split Sp ibe Sample sful Thin Wa Shear Test,	all Tube Sample A PP = Pocket Pe ane Shear Test At	RC = Roller Attempt WOH = Weig enetrometer WOR/C = W	Stem Auger w Stem Auger	r Casing	S _{u(lab)} q _p = Ur N-unco Hamme N ₆₀ = S	= Lab Va confined rected = r Efficier SPT N-un	olded Field Vane Undrained Shear St ne Undrained Shear Strength (psf) Compressive Strength (ksf) Raw Field SPT N-value cy Factor = Rig Specific Annual Calit corrected Corrected for Hammer Effi Efficiency Factor/60%)*N-uncorrecte	WC = Water LL = Liquid I PL = Plastic pration Value PI = Plasticit ciency G = Grain Si	Content, percent Limit Limit ty Index ize Analysis	gth (psf)
		-			- G			╡				Laboratory Testing
Depth (ft.)	Sample No.	Pen./Rec. (in.)	Sample Depth (ft.)	Blows (/6 in.) Shear Strength (psf) or RQD (%)	N-uncorrected N ₆₀	Casing Blows	Elevation	Graphic Log	Visual Desci	ription and Remarks		Results/ AASHTO and Unified Class.
0						H\$A			See Test Boring BB-WWR-	208 for overburden det	tails from 0 to	
- 5 -												
- 10 -							2226		Boulders and cobbles at 7.7		6.9 10.0	
	1D	24/15	10.0 - 12.0	3/6/10/10	16 25				Grey, wet, very stiff, SILT, coarse sand, trace fine grave -GLACIAL TILL-(ML) Cobbles and boulders at 13.	sl	ce medium to	
							1					
- 15 -	2D	18/16	15.0 - 16.5	12/18/50	68 104		215	4	Brown-grey, wet, hard, SIL' coarse gravel -GLACIAL TILL-(ML)	Γ, some medium sand,	little fine to	
						+	1		Bottom of Exploration a Note: Auger refusal on prob	t 17.5 feet below groun able bedrock at 17.5 ft	nd surface.	
- 20 -							_					
							1					
Stratif	er level rea	idings have	been made at tin	indaries between soil types; tr		-		y occur d	ue to conditions other	Page 1 of 1		NAID 2000 I
than	those pre	sent at the t	ime measuremer	its were made.	Sicultura	uotua	III III a	, 2300i U		Boring N	o.: BB-W	WR-208A

I	Main	e Dep	artment	of Transport	ation	1	Project	: Repla	acem	ent	of I-95 Bridges over Webb	Boring No.:	BB-WW	/R-209
			Soil/Rock Exp US CUSTOM				Locatio	Road on: Wa		lle,	Maine	WIN:	2190	0.00
Drill	er:		New England	Boring Contractors	Elev	ation	(ft.)	252	2			Auger ID/OD:	HSA-2.5 in. II)
Ope	rator:		M. Porter		Datı		. ,	NA	VD 8	88		Sampler:	Split Spoon-1.	375 in. ID
Log	ged By:		T. Jones		Rig	Туре		Mo	bile I	B-5:	3 Track Mount	Hammer Wt./Fall:	SS-140#/30 in	
_	Start/F	inish:	10-13-2021/1	0-13-2021	-		lethod:				m Auger	Core Barrel:		
	ng Loca			NB DIV, 2.6 RT	_	ing IC						Water Level*:	Dry	
			actor: 0.922	1.12 217, 210 111	_		Type:	Auton	atic l	M	Hydraulic □	Rope & Cathead □	2.)	
Defini D = S MD = U = T MU = V = Fi	itions: plit Spoon Unsucces: hin Wall Tu Unsucces: ield Vane S	Sample sful Split Sp ube Sample sful Thin Wa Shear Test,	oon Sample Atter all Tube Sample <i>A</i> PP = Pocket Pe ne Shear Test At	RC = Rolle Attempt WOH = We enetrometer WOR/C = \(\begin{array}{c} \text{WO1P = W} \end{array}\)	Core Samp d Stem Au low Stem A er Cone eight of 14 Weight of I	ole uger Auger Olb. Ha Rods ol	mmer I	S _u = Pea S _u (lab) = q _p = Und N-uncorr Hammer N ₆₀ = SF	k/Ren Lab \ onfine ected Efficie PT N-u	mold Vane ed C = Ra ency unco	led Field Vane Undrained Shear Stree Undrained Shear Strength (psf) compressive Strength (ksf) aw Field SPT N-value Factor = Rig Specific Annual Caliborrected Corrected for Hammer Efficificiency Factor/60%)*N-uncorrected	rength (psf)	Limit y Index ze Analysis	gth (psf)
		·		Sample Information	7				┪					Laboratory
Depth (ft.)	Sample No.	Pen./Rec. (in.)	Sample Depth (ft.)	Blows (/6 in.) Shear Strength (psf) or RQD (%)	N-uncorrected	N ₆₀	Casing Blows	Elevation (ft.)	Granhic I od	Glapliic Log		iption and Remarks		Testing Results/ AASHTO and Unified Class.
0	1D	24/17	0.0 - 2.0	1/3/7/11	10	15	H\$A				Brown, dry, stiff, SILT -MARINE DEPOSIT-(ML)			
	2D	24/22	2.0 - 4.0	8/10/13/15	23	35		-			Brown mottled, dry, hard, SI -MARINE DEPOSIT-(ML)	ILT, trace fine sand		G#644209 A-4(0), ML
- 5 -	3D	24/24	4.0 - 6.0	12/17/16/18	33	51		-			Similar to 2D above -MARINE DEPOSIT-(ML)			
- 10 -	4D	24/24	10.0 - 12.0	4/3/4/5	7	11					Brown-grey, moist, stiff, Cla-MARINE DEPOSIT-(ML) Similar to 4D above, except		and partings	
	5D/A	24/17	15.0 - 17.0	5/18/17/13	35	54		235.9			-MARINE DEPOSIT-(ML) Brown, dry, very dense, Gra		16.3-	
								233.2			-GLACIAL TILL-(SM)		17.0-	
								1			Bottom of Exploration at	17.0 feet below groun	ıd surface.	
										-	No Refusal			
- 20 -														
Rem	arks:							•		_				
* Wat	er level rea	adings have	been made at tim	indaries between soil types; nes and under conditions sta			-	ons mav	occur	due	e to conditions other	Page 1 of 1		NAID 200
than	those pre	sent at the t	ime measuremen	its were made.	nou. GIUL	uwatt	, nuotuatio	ono may	occur	uue	, to continuous office	Boring No	o.: BB-W	WR-209

]	Main	e Dep	artment	of Transport	ation	Р	roject	: Repla	iceme	nt	of I-95 Bridges over Webb	Boring No.: _	BB-WW	/R-210
		- 1	Soil/Rock Exp US CUSTOM	loration Log		L	Road Location: Waterville, Maine				Maine	WIN:	2190	0.00
Drill	er:		New England	Boring Contractors	Elevati	on (ft.)	255	.4			Auger ID/OD:	HSA-2.5 in. II)
Ope	rator:		M. Porter		Datum:	:		NA	VD 8	8			Split Spoon-1.	375 in. ID
Log	ged By:		T. Jones		Rig Typ	pe:		Mo	bile B	3-53	3 Track Mount	Hammer Wt./Fall:	SS-140#/30 in	
Date	Start/F	inish:	10-13-2021/1	0-13-2021	Drilling	ј Ме	thod:	Hol	low S	iter	m Auger	Core Barrel:		
Bori	ing Loca	tion:	Sta. 425+57.2	NB DIV, 2.0 RT	Casing	ID/	OD:					Water Level*:	Dry	
Ham	mer Eff	iciency F	actor: 0.922		Hamme	er Ty	ype:	Autom	atic ⊠	₫	Hydraulic □	Rope & Cathead □		
D = S MD = U = T MU = V = F	hin Wall Tu Unsuccesi ield Vane S	sful Split Sp ube Sample sful Thin Wa Shear Test,	oon Sample Atter all Tube Sample A PP = Pocket Pe ine Shear Test A	SSA = Soli HSA = Holl RC = Rolle Attempt	Core Sample d Stem Auger ow Stem Auge r Cone eight of 140lb. Veight of One F	er Hamı s or C	o N mer H Casing N	Su(lab) = Ip = Unc N-uncorre Hammer N ₆₀ = SF	Lab Value Va	ane d C = Ra ncy nco	led Field Vane Undrained Shear Stie e Undrained Shear Strength (psf) compressive Strength (ksf) aw Field SPT N-value r Factor = Rig Specific Annual Calib prrected Corrected for Hammer Effi fficiency Factor/60%)*N-uncorrecter	WC = Water (LL = Liquid Li PL = Plastic L ration Value PI = Plasticity siency G = Grain Siz	Content, percent mit .imit Index e Analysis	gth (psf)
		<u> </u>			ъ	Т			1	-				Laboratory
Depth (ft.)	Sample No.	Pen./Rec. (in.)	Sample Depth (ft.)	Blows (/6 in.) Shear Strength (psf) or RQD (%)	N-uncorrected	00.	Casing Blows	Elevation (ft.)	Graphic Log	~		iption and Remarks		Testing Results/ AASHTO and Unified Class.
0	1D/A	24/22	0.0 - 2.0	1/3/5/8	8 12	2	нѕа	254.9			Brown, dry, stiff, SILT, trac \-TOPSOIL-(ML)	e fine sand, trace roots	0.5	
											Brown, dry, stiff, SILT, trac	e roots	0.5-	
	2D	24/24	2.0 - 4.0	4/6/7/9	13 20	0					-MARINE DEPOSIT-(ML) Brown mottled, damp, very -MARINE DEPOSIT-(ML)	stiff, SILT, trace fine to	medium sand	G#644210 A-4(0), ML
- 5 -	3D	24/24	4.0 - 6.0	6/8/7/9	15 23	3					Brown-grey, damp, very stif -MARINE DEPOSIT-(ML)	f, SILT, little clay, trace	e organics	
- 10 -											Brown-grey, damp, stiff, Cla	way SH T. faw fina can	d nortings	
	4D	24/24	10.0 - 12.0	3/4/4/5	8 12	2					trace organics -MARINE DEPOSIT-(ML)	yey Sill, few fine sam	u parungs,	
								242.5			Note: Becomes gravelly at 1	2.9 ft based on drill acti	ion. ———12.9-	
						+	\ <u> </u>							
- 15 -	5D	24/23	15.0 - 17.0	6/10/10/7	20 31	1	V				Brown-grey, moist, hard, SI sand, trace fine gravel, mode-GLACIAL TILL-(ML)		le coarse	
						+		238.4		Щ	Bottom of Exploration at	17.0 feet below groun	17.0- d surface.	
						1					No Refusal			
- 20 -														
	narks:	s represent	approximate bou	ndaries between soil types;	transitions ma	ay be	gradual.		1			Page 1 of 1		
* Wat	er level rea	idings have sent at the t	been made at tin	nes and under conditions sta ats were made.	ted. Groundw	vater	fluctuatio	ons may	occur c	due	to conditions other	Boring No	o.: BB-W	WR-210

Top Row: BB-WWR-102, Run No. R1 31.8' (left) to 36.0' (right)

Top Middle Row: BB-WWR-102, Run No. R2 36.0' (left) to 40.0' (right)

Bottom Middle Row: BB-WWR-102, Run No. R3 40.0' (left) to 42.0' (middle-left), BB-WWR-101, Run No. R1 11.5' (middle-left) to 14.8

(middle-right), BB-WWR-101, Run No. R2 14.8' (middle-right) to 15.6' (right)

Bottom Row: BB-WWR-101, Run No. R3 15.6' (left) to 18.0' (middle-left), BB-WWR-101, Run No. R4 18.0' (middle-left) to 19.6' (middle)

Page 2 of 6

REPLACEMENT OF I-95 BRIDGES OVER WEBB ROAD **MAINEDOT WIN 21900.01 & WIN 21894.01** ROCK CORE PHOTOGRAPHS **WATERVILLE, MAINE**

Top Row: BB-WWR-101, Run No. R5 19.6' (left) to 23.0' (middle-right). BB-WWR-103, Bottom Portion of R3 (middle-right to right)

Top Middle Row: BB-WWR-101, Run No. R6 23.0' (left) to 28.0' (right) **Bottom Middle Row:** BB-WWR-103, Run No. R1 15.0' (left) to 19.0' (middle-right), BB-WWR-103, Run No. R2 19.0' (middle-right) to 21.7'

Bottom Row: BB-WWR-103, Run No. R2 19.0' (left) to 21.7' (middle-left), BB-WWR-103, Run No. R3 21.7' (middle-left) to 25.0' (right)

Top Row: BB-WWR-104, Run No. R1 16.9' (left) to 21.4' (right)
Top Middle Row: BB-WWR-104, Run No. R2 21.4' (left) to 25.4' (right)
Bottom Middle Row: BB-WWR-104, Run No. R3 25.4' (left) to 26.9' (right)

Top Row: BB-WWR-203, Run No. R1 13.0' (left) to 18.0' (right)
Top Middle Row: BB-WWR-203, Run No. R2 18.0' (left) to 23.0' (right)
Bottom Middle Row: BB-WWR-201, Run No. R1 16.9' (left) to 21.7' (right)
Bottom Row: BB-WWR-201, Run No. R2 21.7' (left) to 26.7' (right)

Top Row: BB-WWR-202, Run No. R1 15.3' (left) to 20.3' (right)

Top Middle Row: BB-WWR-202, Run No. R2 20.3' (left) to 25.3' (right)

Bottom Middle Row: BB-WWR-204, Run No. R1 13.7' (left) to 16.2' (middle), BB-WWR-204, Run No. R2 16.2' (middle) to 18.2' (middle)

right)

Bottom Row: BB-WWR-204, Run No. R3 18.2' (left) to 20.2' (middle)

Top Row: BB-WWR-204, Run No. R4 20.2' (left) to 24.6' (right) **Top Middle Row:** BB-WWR-204, Run No. R4 24.6' (left) to 25.2' (middle left)

APPENDIX B

Observation Well Installation and Groundwater Monitoring Reports

HVI EA

OBSERVATION WELL

Well No.

ALDRICH	T	NOTA	ALL ATION DE	DODT		Boring No.	<u>)W)</u>
			ALLATION REI			BB-WWR-102(0)W)
PROJECT	Replacement of I-95 B	ridges over	Webb Rd.	H&A FILI		12-002/-003	
LOCATION CLIENT	Waterville, Maine MacFarland-Johnson,	Inc		PROJECT FIELD RE		ausmeyer	
CONTRACTOR	New England Boring (DATE INS			
	Brad Enos	301111111111111111111111111111111111111		WATER I			
Ground El. El. Datum	234.1 ft NAVD88	Location	See Plan	_	☐ Guard Pi☐ Roadway		
SOIL/ROCK	BOREHOLE		Type of protective cove	er/lock	Steel Co	over/Padlock	
CONDITIONS	BACKFILL						
-FILL-	-FILTER SAND-		Height of top of guard above ground surface	pipe		3.2	_ft
2.0	2.0 -BENTONITE SEAL-		Height of top of riser p	oipe		3.2	ft
	3.0	_	Type of protective casi	ing:	Steel (Guard Pipe	
-MARINE DEPOSITS-	-		Length			4.7	ft
			Inside Diameter			4.0	in
5.5	_		Depth of bottom of gua	ard pipe		1.5	ft
				rentonite Seal	Top of Seal (ft) 2.0	Thickness (ft)	_
		L1					_ _ _
-GLACIAL TILL-	-FILTER SAND-		Type of riser pipe:		Sched	ule 40 PVC	
GEAGIAE TIEE	TIETEK SAND		Inside diameter of	riser nine	Sened	2.0	— in
			Type of backfill are		Holliston Sa	and (Filter Sand)	
			Diameter of borehole			4.0	in
			Depth to top of well see	reen		4.7	ft
			Type of screen		Sched	ule 40 PVC	
			Screen gauge or siz			0.01	in
		L2	Diameter of screen			2.0	in
25.7	_		Type of backfill aroun	d screen	Holliston Sa	and (Filter Sand)	_
-WEATHERED ROCK	-		Depth of bottom of wel	ll screen		14.7	ft
-BEDROCK-	_	L3	Bottom of Silt trap			15.0	ft
	•	1	Depth of bottom of bor	rehole		42.0	— ft
42.0 (Botton	m of Exploration)					12.0	
	epth from ground surface in feet)			(Not to Scale)			
	7.9 ft + Pay Length (L1)		10.0 ft + 0.3 of screen (L2) Length of sil	lt trap (L3)	= 18.2 Pay let	ft_ ngth	
COMMENTS:							

GROUNDWATER MONITORING REPORT

OW/PZ NUMBER
BB-WWR-
102(OW)

Page Replacement of I95 Northbound Bridge Over Webb Rd. 132212-004 PROJECT H&A FILE NO. LOCATION PROJECT MGR. Waterville, Maine E. Force CLIENT McFarland-Johnson, Inc. FIELD REP. N. Klausmeyer CONTRACTOR 6/11/2018 New England Boring Contractors DATE

ELEVATIO	OF REFER	RENCE POIN		REFERENCE PO	OINT: Ground Surface V PVC	Other
Date	Time	Elapsed Time (days)	Depth of Water from Reference Point (ft)	Elevation of Water	Remarks	Read By
6/12/2018	2:41 PM	1	2.8	231.3	Sunny & 70s	NLK
6/13/2018	8:47 AM	2	3.1	231.0	Sunny & 70s	NLK
6/14/2018	9:45 AM	3	3.0	231.1	Cloudy & 70s (overnight rain)	NLK
6/20/2018	5:25 PM	9	4.1	230.0	Sunny & 80s	NLK
7/2/2018	5:30 PM	21	3.3	230.8	Sunny & 80s	NLK
7/13/2018	5:15 PM	32	3.3	230.8	Sunny & 80s	NLK
7/26/2018	4:15 PM	45	4.3	229.9	Sunny & 70s (rain in past several days)	NLK
8/13/2018	2:20 PM	63	7.5	226.6	Partly Cloudy & 80s	NLK
10/14/2021	9:00 AM	1221	2.5	231.6	Sunny 60s	TPJ
11/11/2021	9:45 AM	1249	2.4	231.7	Sunny 50s	JKF

Well No. **OBSERVATION WELL** BB-WWR-104(OW) Boring No. INSTALLATION REPORT BB-WWR-104(OW) Replacement of I-95 Bridges over Webb Rd. PROJECT H&A FILE NO. 132212-002/-003 Waterville, Maine LOCATION PROJECT MGR. E. Force MacFarland-Johnson, Inc. N. Klausmeyer CLIENT FIELD REP. New England Boring Contractors 6/13/2018 CONTRACTOR DATE INSTALLED **Brad Enos** DRILLER WATER LEVEL 3.9' Ground El. 241.4 Location See Plan 1 **Guard Pipe** El. Datum NAVD88 Roadway Box SOIL/ROCK **BOREHOLE** Steel Cover/Padlock Type of protective cover/lock CONDITIONS **BACKFILL** Height of top of guard pipe above ground surface -FILL--FILTER SAND-Height of top of riser pipe 2.9 above ground surface -BENTONITE SEAL-Type of protective casing: Steel Guard Pipe Length **Inside Diameter** 4.0 in Depth of bottom of guard pipe 2.3 ft **Type of Seals** Top of Seal (ft) Thickness (ft) Bentonite Seal L1 -GLACIAL TILL--FILTER SAND-Type of riser pipe: Schedule 40 PVC Inside diameter of riser pipe Type of backfill around riser Holliston Sand (Filter Sand) Diameter of borehole 4.0 Depth to top of well screen Type of screen Schedule 40 PVC Screen gauge or size of openings 0.01 L2 Diameter of screen Type of backfill around screen Holliston Sand (Filter Sand) -WEATHERED ROCK-Depth of bottom of well screen 14.5 4.0 1.3 -BEDROCK--GRAVEL-**Bottom of Silt trap** 14.6

Depth of bottom of borehole

ft

Length of screen (L2)

(Not to Scale)

Length of silt trap (L3)

26.9

Pay length

ft

COMMENTS:

26.9

(Bottom of Exploration)
(Numbers refer to depth from ground surface in feet)

Riser Pay Length (L1)

GROUNDWATER MONITORING REPORT

OW/PZ NUMBER
BB-WWR-
104(OW)

						1 01 1
PROJECT			Southbound Bridge Over We	ebb Rd.	H&A FILE NO. 132212-004	
LOCATION		ville, Maine			PROJECT MGR. E. Force	
CLIENT		rland-Johnson,			FIELD REP. N. Klausmeyer	
CONTRACT		England Boring		DEBROSS:	DATE 6/14/2018	0.1
ELEVATIO	N OF REFEI	RENCE POIN		REFERENCE PO	OINT: Ground Surface PVC	Other
Date	Time	Elapsed Time (days)	Depth of Water from Reference Point (ft)	Elevation of Water	Remarks	Read By
6/14/2018	10:03 AM	0	3.9	237.5	Initial Reading - Cloudy & 70s (overnight rain)	NLK
6/20/2018	5:28 PM	6	4.5	236.9	Sunny & 80s	NLK
7/2/2018	5:30 PM	18	4.6	236.8	Sunny & 80s	NLK
7/13/2018	5:15 PM	29	4.4	237.1	Sunny & 80s	NLK
7/26/2018	4:15 PM	42	7.0	234.5	Sunny & 70s (rain in past several days)	NLK
8/13/2018	2:20 PM	60	7.0	234.4	Partly Cloudy & 80s	NLK
10/13/2021	3:00 PM	1217	2.8	238.6	Sunny 60s	ТРЈ
11/11/2021	10:00 AM	1246	2.6	238.8	Sunny 50s	JKF

APPENDIX C

Laboratory Test Results

Client: Haley & Aldrich, Inc.

Project: I-95 NB Bridge Over Webb Rd

Location: Waterville, ME Project No: GTX-308851

Boring ID: BB-WWR-101 Sample Type: jar Tested By: GA
Sample ID: 2DA Test Date: 10/03/18 Checked By: emm

Depth: 2-3 ft Test Id: 474287

Test Comment: ---

Visual Description: Moist, very dark gray sand with silt

Sample Comment: ---

Particle Size Analysis - ASTM D422

% Cobble	% Gravel	% Sand	% Silt & Clay Size
_	1.8	88.2	10.0

Sieve Name	Sieve Size, mm	Percent Finer	Spec. Percent	Complies
0.375 in	9.50	100		
#4	4.75	98		
#10	2.00	97		
#20	0.85	82		
#40	0.42	40		
#60	0.25	21		
#100	0.15	15		
#140	0.11	12		
#200	0.075	10		

<u>Coefficients</u>						
D ₈₅ =1.0086 mm	$D_{30} = 0.3227 \text{ mm}$					
D ₆₀ = 0.5909 mm	$D_{15} = 0.1558 \text{ mm}$					
D ₅₀ = 0.5014 mm	$D_{10} = N/A$					
C _u =N/A	$C_C = N/A$					

ASTM N/A Classification

AASHTO Stone Fragments, Gravel and Sand (A-1-b (0))

<u>Sample/Test Description</u>
Sand/Gravel Particle Shape : --Sand/Gravel Hardness : ---

Client: Haley & Aldrich, Inc.

Project: I-95 NB Bridge Over Webb Rd

Location: Waterville, ME Project No: GTX-308851

Boring ID: BB-WWR-102 (OW) Sample Type: jar Tested By: GA Sample ID: 1D Test Date: 09/28/18 Checked By: emm

Depth: 0-1.5 ft Test Id: 474286

Test Comment: ---

Visual Description: Moist, dark brown silty sand with gravel

Sample Comment: ---

Particle Size Analysis - ASTM D422

% Cobble	% Gravel	% Sand	% Silt & Clay Size
_	16.3	38.8	44.9

Sieve Name	Sieve Size, mm	Percent Finer	Spec. Percent	Complies
0.75 in	19.00	100		
0.5 in	12.50	96		
0.375 in	9.50	90		
#4	4.75	84		
#10	2.00	79		
#20	0.85	74		
#40	0.42	69		
#60	0.25	64		
#100	0.15	57		
#140	0.11	51		
#200	0.075	45		

<u>Coefficients</u>		
D ₈₅ = 5.5380 mm	$D_{30} = N/A$	
$D_{60} = 0.1833 \text{ mm}$	$D_{15} = N/A$	
$D_{50} = 0.1008 \text{ mm}$	$D_{10} = N/A$	
$C_u = N/A$	$C_c = N/A$	

ASTM N/A Classification

AASHTO Silty Soils (A-4 (0))

<u>Sample/Test Description</u> Sand/Gravel Particle Shape: ANGULAR

Sand/Gravel Hardness: HARD

Client: Haley & Aldrich, Inc.

Project: I-95 NB Bridge Over Webb Rd

Location: Waterville, ME

Boring ID: BB-WWR-102 (OW) Sample Type: jar Tested By: GΑ Sample ID: 2D Test Date: 10/03/18 Checked By: emm

Depth: Test Id: 2-4 ft 474285

Test Comment:

Moist, dark grayish brown silty sand Visual Description:

Sample Comment:

Particle Size Analysis - ASTM D422

% Cobble	% Gravel	% Sand	% Silt & Clay Size
_	0.6	85.8	13.6

Sieve Name	Sieve Size, mm	Percent Finer	Spec. Percent	Complies
0.375 in	9.50	100		
#4	4.75	99		
#10	2.00	97		
#20	0.85	91		
#40	0.42	65		
#60	0.25	39		
#100	0.15	23		
#140	0.11	18		
#200	0.075	14		

<u>Coef</u>	<u>ficients</u>
D ₈₅ =0.7234 mm	$D_{30} = 0.1875 \text{ mm}$
D ₆₀ = 0.3840 mm	$D_{15} = 0.0840 \text{ mm}$
D ₅₀ = 0.3137 mm	$D_{10} = N/A$
C _u =N/A	C _c =N/A

Project No:

GTX-308851

Classification N/A AASHTO Silty Gravel and Sand (A-2-4 (0))

Sample/Test Description

Sand/Gravel Particle Shape: ---Sand/Gravel Hardness: ---

<u>ASTM</u>

Client: Haley & Aldrich, Inc.

Project: I-95 NB Bridge Over Webb Rd

Location: Waterville, ME Project No: GTX-308851

Boring ID: BB-WWR-102 (OW) Sample Type: jar Tested By: GA Sample ID: 6D Test Date: 10/03/18 Checked By: emm

Depth: 20-21.1 ft Test Id: 474284

Test Comment: ---

Visual Description: Moist, dark gray silty sand with gravel

Sample Comment: ---

Particle Size Analysis - ASTM D422

% Cobble	% Gravel	% Sand	% Silt & Clay Size
_	15.0	40.1	44.9

Sieve Name	Sieve Size, mm	Percent Finer	Spec. Percent	Complies
0.75 in	19.00	100		
0.5 in	12.50	94		
0.375 in	9.50	91		
#4	4.75	85		
#10	2.00	76		
#20	0.85	68		
#40	0.42	61		
#60	0.25	56		
#100	0.15	51		
#140	0.11	48		
#200	0.075	45		

<u>Coeffi</u>	<u>cients</u>
D ₈₅ =4.7749 mm	$D_{30} = N/A$
D ₆₀ = 0.3775 mm	$D_{15} = N/A$
D ₅₀ = 0.1337 mm	$D_{10} = N/A$
$C_u = N/A$	$C_c = N/A$

ASTM N/A Classification

AASHTO Silty Soils (A-4 (0))

<u>Sample/Test Description</u> Sand/Gravel Particle Shape : ANGULAR

Sand/Gravel Hardness: HARD

Client:	Haley & Aldrich, Inc.
Project Name:	I-95 NB Bridge Over Webb Rd
Project Location:	Waterville, ME
GTX #:	308851
Test Date:	9/28/2018
Tested By:	tlm
Checked By:	jsc
Boring ID:	BB-WWR-102 (OW)
Sample ID:	R2
Depth, ft:	39.1-39.7
Sample Type:	rock core
Sample Description:	See photographs Intact material failure

Compressive Strength and Elastic Moduli of Rock by ASTM D7012 - Method D

Peak Compressive Stress: 5,970

The axial strain gauges failed before the peak value was attained.

Stress Range, psi	Young's Modulus, psi	Poisson's Ratio
600-2200	55,300,000	
2200-3800		
3800-5400		

Notes:

Test specimen tested at the approximate as-received moisture content and at standard laboratory temperature.

The axial load was applied continuously at a stress rate that produced failure in a test time between 2 and 15 minutes.

Young's Modulus and Poisson's Ratio calculated using the tangent to the line in the stress range listed.

Calculations assume samples are isotropic, which is not necessarily the case.

Client:	Haley & Aldrich, Inc.	Test Date: 9/27/2018
Project Name:	I-95 NB Bridge Over Webb Rd	Tested By: tlm
Project Location:	Waterville, ME	Checked By: jsc
GTX #:	308851	
Boring ID:	BB-WWR-102 (OW)	
Sample ID:	R2	
Depth:	39.1-39.7 ft	
Visual Description:	See photographs	

UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D4543

BULK DENSITY					DEVIATION FROM STRAIGHTNESS (Procedure S1)
	1	2	Average		
Specimen Length, in:	4.26	4.26	4.26		Maximum gap between side of core and reference surface plate:
Specimen Diameter, in:	1.98	1.98	1.98		Is the maximum gap ≤ 0.02 in.? YES
Specimen Mass, g:	595.83				
Bulk Density, lb/ft ³	173	Minimum Diameter Tolerence Me	et?	YES	Maximum difference must be < 0.020 in.
Length to Diameter Ratio:	2.2	Length to Diameter Ratio Tolerar	nce Met?	YES	Straightness Tolerance Met? YES

END FLATNESS AND PARALL	ELISM (Proced	lure FP1)													
END 1	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	-0.00040	-0.00030	-0.00020	-0.00010	0.00000	0.00000	0.00000	0.00000	0.00000	-0.00010	-0.00010	-0.00020	-0.00020	-0.00020	-0.00030
Diameter 2, in (rotated 90°)	-0.00030	-0.00020	-0.00020	-0.00010	-0.00010	0.00000	0.00000	0.00000	0.00000	0.00010	0.00010	0.00010	0.00010	0.00010	0.00000
											Difference between	en max and m	in readings, in:		
											0° =	0.00040	90° =	0.00040	
END 2	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	-0.00040	-0.00030	-0.00020	-0.00010	0.00000	0.00000	0.00000	0.00000	0.00000	-0.00010	-0.00010	-0.00020	-0.00020	-0.00020	-0.00030
Diameter 2, in (rotated 90°)	-0.00030	-0.00020	-0.00020	-0.00010	-0.00010	0.00000	0.00000	0.00000	0.00000	0.00010	0.00010	0.00010	0.00010	0.00010	0.00000
											Difference between	en max and m	in readings, in:		
											0° =	0.0004	90° =	0.0004	
											Maximum differe	ence must be <	0.0020 in.	Difference = +	0.00020

DIAMETER 1			
End 1	: Slope of Best Fit Line	0.00001	
	Angle of Best Fit Line:	0.00065	
End 2			
	Slope of Best Fit Line Angle of Best Fit Line:	0.00001 0.00065	
Maximum Ang	ular Difference:	0.00000	
	Parallelism Tolerance Met?	YES	
	Spherically Seated		
DIAMETER 2			
DIAMETER 2 End 1	Spherically Seated		
	Spherically Seated : Slope of Best Fit Line	0.00020	
End 1	Spherically Seated Slope of Best Fit Line Angle of Best Fit Line:	0.00020 0.01146	
	Spherically Seated Slope of Best Fit Line Angle of Best Fit Line:		
End 1	Spherically Seated : : Slope of Best Fit Line Angle of Best Fit Line:	0.01146	
End 1	Spherically Seated Slope of Best Fit Line Angle of Best Fit Line: Slope of Best Fit Line	0.01146	
End 1	Spherically Seated Slope of Best Fit Line Angle of Best Fit Line: Slope of Best Fit Line Angle of Best Fit Line:	0.01146 0.00020 0.01146 0.00000	

Flatness Tolerance Met?

YES

PERPENDICULARITY (Procedur	ERPENDICULARITY (Procedure P1) (Calculated from End Flatness and Parallelism measurements above)							
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle°	Perpendicularity Tolerance Met?	Maximum angle of departure must be $\leq 0.25^{\circ}$		
Diameter 1, in	0.00040	1.980	0.00020	0.012	YES			
Diameter 2, in (rotated 90°)	0.00040	1.980	0.00020	0.012	YES	Perpendicularity Tolerance Met? YES		
END 2								
Diameter 1, in	0.00040	1.980	0.00020	0.012	YES			
Diameter 2, in (rotated 90°)	0.00040	1.980	0.00020	0.012	YES			

Client: Haley & Aldrich, Inc.

Project Name: I-95 NB Bridge Over Webb Rd

Project Location: Waterville, ME

GTX #: 308851 Test Date: 9/28/2018

Tested By: tlm Checked By: jsc

Boring ID: BB-WWR-102

Sample ID: R2

Depth, ft: 39.1-39.7

After cutting and grinding

After break

Client: Haley & Aldrich, Inc.

Project: I-95 SB Bridge Over Webb Rd

Location: Waterville, ME Project No: GTX-308852

Boring ID: BB-WWR-103 Sample Type: jar Tested By: GA Sample ID: 1DA Test Date: 09/28/18 Checked By: emm

Depth: 0-1 ft Test Id: 474299

Test Comment: --Visual Description: Moist, very dark brown silty sand with gravel

Sample Comment: ---

Particle Size Analysis - ASTM D422

% Cobble	% Gravel	% Sand	% Silt & Clay Size
_	29.8	58.0	12.2

Sieve Name	Sieve Size, mm	Percent Finer	Spec. Percent	Complies
0.75 in	19.00	100		
0.5 in	12.50	90		
0.375 in	9.50	83		
#4	4.75	70		
#10	2.00	55		
#20	0.85	35		
#40	0.42	26		
#60	0.25	21		
#100	0.15	17		
#140	0.11	14		
#200	0.075	12		

<u>Coefficients</u>					
D ₈₅ =10.2800 mm	$D_{30} = 0.5931 \text{ mm}$				
D ₆₀ = 2.6568 mm	$D_{15} = 0.1163 \text{ mm}$				
D ₅₀ = 1.6181 mm	$D_{10} = N/A$				
C _{II} =N/A	$C_C = N/A$				

ASTM N/A

AASHTO Stone Fragments, Gravel and Sand (A-1-b (0))

<u>Sample/Test Description</u> Sand/Gravel Particle Shape: ANGULAR

Sand/Gravel Hardness : HARD

Project: I-95 SB Bridge Over Webb Rd

Location: Waterville, ME Project No:

Boring ID: BB-WWR-103 Sample Type: jar Tested By: GA Sample ID: 2D Test Date: 09/28/18 Checked By: emm

Depth: 2-4 ft Test Id: 474300

Test Comment: ---

Visual Description: Moist, dark grayish brown silty sand with gravel

Sample Comment: ---

Particle Size Analysis - ASTM D422

% Cobble	% Gravel	% Sand	% Silt & Clay Size
_	18.3	39.6	42.1

Sieve Name	Sieve Size, mm	Percent Finer	Spec. Percent	Complies
0.75 in	19.00	100		
0.5 in	12.50	90		
0.375 in	9.50	88		
#4	4.75	82		
#10	2.00	77		
#20	0.85	70		
#40	0.42	62		
#60	0.25	56		
#100	0.15	50		
#140	0.11	47		
#200	0.075	42		

<u>Coefficients</u>		
D ₈₅ = 6.8524 mm	$D_{30} = N/A$	
D ₆₀ = 0.3459 mm	$D_{15} = N/A$	
D ₅₀ = 0.1445 mm	$D_{10} = N/A$	
$C_u = N/A$	$C_c = N/A$	

GTX-308852

ASTM N/A

AASHTO Silty Soils (A-4 (0))

<u>Sample/Test Description</u> Sand/Gravel Particle Shape : ANGULAR

Sand/Gravel Hardness : HARD

Project: I-95 SB Bridge Over Webb Rd

Location: Waterville, ME Project No:

Boring ID: BB-WWR-104(OW) Sample Type: jar Tested By: GA Sample ID: 1D Test Date: 09/28/18 Checked By: emm

Depth: 0-2 ft Test Id: 474301

Test Comment: ---

Visual Description: Moist, very dark brown silty sand

Sample Comment: ---

Particle Size Analysis - ASTM D422

% Cobble	% Gravel	% Sand	% Silt & Clay Size
_	3.6	53.5	42.9

Sieve Name	Sieve Size, mm	Percent Finer	Spec. Percent	Complies
0.375 in	9.50	100		
#4	4.75	96		
#10	2.00	90		
#20	0.85	82		
#40	0.42	70		
#60	0.25	61		
#100	0.15	52		
#140	0.11	47		
#200	0.075	43		

<u>Coefficients</u>		
D ₈₅ =1.1547 mm	$D_{30} = N/A$	
D ₆₀ = 0.2423 mm	$D_{15} = N/A$	
D ₅₀ = 0.1301 mm	$D_{10} = N/A$	
$C_u = N/A$	$C_{c} = N/A$	

GTX-308852

ASTM N/A

AASHTO Silty Soils (A-4 (0))

Sample/Test Description
Sand/Gravel Particle Shape: ANGULAR
Sand/Cravel Hardness: HARD

Sand/Gravel Hardness : HARD

Project: I-95 SB Bridge Over Webb Rd

Location: Waterville, ME Project No: GTX-308852

Boring ID: BB-WWR-104(OW) Sample Type: jar Tested By: GA

Boring ID: BB-WWR-104(OW) Sample Type: jar Tested By: GA Sample ID: 3D Test Date: 09/28/18 Checked By: emm

Depth: 4-6 ft Test Id: 474302

Test Comment: ---

Visual Description: Moist, dark gray sandy clay

Sample Comment: ---

Particle Size Analysis - ASTM D422

% Cobble	% Gravel	% Sand	% Silt & Clay Size
_	6.0	25.3	68.7

Sieve Name	Sieve Size, mm	Percent Finer	Spec. Percent	Complies
0.5 in	12.50	100		
0.375 in	9.50	98		
#4	4.75	94		
#10	2.00	90		
#20	0.85	86		
#40	0.42	82		
#60	0.25	78		
#100	0.15	75		
#140	0.11	71		
#200	0.075	69		

<u>Coefficients</u>		
$D_{85} = 0.6839 \text{ mm}$	$D_{30} = N/A$	
$D_{60} = N/A$	$D_{15} = N/A$	
$D_{50} = N/A$	$D_{10} = N/A$	
$C_u = N/A$	$C_{c} = N/A$	

ASTM N/A

AASHTO Silty Soils (A-4 (0))

<u>Sample/Test Description</u> Sand/Gravel Particle Shape: ANGULAR

Sand/Gravel Hardness: HARD

Client:	Haley & Aldrich, Inc.
Project Name:	I-95 SB Bridge Over Webb Rd
Project Location:	Waterville, ME
GTX #:	308852
Test Date:	10/1/2018
Tested By:	tlm
Checked By:	jsc
Boring ID:	BB-WWR-103
Sample ID:	R2
Depth, ft:	21.4-22.0
Sample Type:	rock core
Sample Description:	See photographs Discontinuity failure

Compressive Strength and Elastic Moduli of Rock by ASTM D7012 - Method D

Peak Compressive Stress: 7,387

The strain gauges failed before the peak value was attained. Young's Modulus and Poisson's Ratio within the third stress range could not be determined.

Stress Range, psi	Young's Modulus, psi	Poisson's Ratio
700-2700	3,100,000	0.12
2700-4700	2,890,000	0.21
4700-6600		

Notes:

Test specimen tested at the approximate as-received moisture content and at standard laboratory temperature.

The axial load was applied continuously at a stress rate that produced failure in a test time between 2 and 15 minutes.

Young's Modulus and Poisson's Ratio calculated using the tangent to the line in the stress range listed.

Calculations assume samples are isotropic, which is not necessarily the case.

Client:	Haley & Aldrich, Inc.	Test Date: 9/27/2018
Project Name:	I-95 SB Bridge Over Webb Rd	Tested By: tlm
Project Location:	Waterville, ME	Checked By: jsc
GTX #:	308852	5.00.000 5,1
Boring ID:	BB-WWR-103	
Sample ID:	R2	
Depth:	21.4-22 ft	
Visual Description:	See photographs	

UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D4543

BULK DENSITY				DEVIATION FROM STRAIGHTNESS (Procedure S1)
	1	2	Average	
Specimen Length, in:	4.26	4.25	4.26	Maximum gap between side of core and reference surface plate:
Specimen Diameter, in:	1.99	1.99	1.99	Is the maximum gap ≤ 0.02 in.? YES
Specimen Mass, g:	591.23			
Bulk Density, lb/ft ³	170	Minimum Diameter Tolerence Met?	YES	Maximum difference must be < 0.020 in.
Length to Diameter Ratio:	2.1	Length to Diameter Ratio Tolerance	Met? YES	Straightness Tolerance Met? YES

END FLATNESS AND PARALL	ELISM (Proced	lure FP1)													
END 1	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	0.00000	0.00000	0.00000	0.00010	0.00010	0.00000	0.00000	0.00000	0.00000	-0.00010	-0.00020	-0.00020	-0.00030	-0.00030	-0.00030
Diameter 2, in (rotated 90°)	-0.00030	-0.00020	-0.00020	-0.00010	-0.00010	0.00000	0.00000	0.00000	-0.00010	-0.00020	-0.00030	-0.00040	-0.00040	-0.00050	-0.00060
											Difference between	en max and m	in readings, in:		
											0° =	0.00040	90° =	0.00060	
END 2	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	0.00000	0.00000	0.00000	0.00010	0.00010	0.00000	0.00000	0.00000	0.00000	-0.00010	-0.00020	-0.00020	-0.00030	-0.00030	-0.00030
Diameter 2, in (rotated 90°)	-0.00030	-0.00020	-0.00020	-0.00010	-0.00010	0.00000	0.00000	0.00000	-0.00010	-0.00020	-0.00030	-0.00040	-0.00040	-0.00050	-0.00050
											Difference between	en max and m	in readings, in:		
											0° =	0.0004	90° =	0.0005	
1											Maximum differe	ence must be <	0.0020 in.	Difference = +	0.00030

DIAMETER 1			
End 1:	: Slope of Best Fit Line Angle of Best Fit Line:	0.00022 0.01261	
End 2:	: Slope of Best Fit Line Angle of Best Fit Line:	0.00022 0.01261	
Maximum Ang	ular Difference:	0.00000	
	Parallelism Tolerance Met?	YES	
	Spherically Seated		
DIAMETER 2			
DIAMETER 2 End 1:	Spherically Seated	0.00021 0.01179	
	Spherically Seated Slope of Best Fit Line Angle of Best Fit Line:		
End 1:	Spherically Seated Slope of Best Fit Line Angle of Best Fit Line: Slope of Best Fit Line	0.01179	

Flatness Tolerance Met? YES

PERPENDICULARITY (Procedure P1) (Calculated from End Flatness and Parallelism measurements above)							
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle°	Perpendicularity Tolerance Met?	Maximum angle of departure must be $\leq 0.25^{\circ}$	
Diameter 1, in	0.00040	1.990	0.00020	0.012	YES		
Diameter 2, in (rotated 90°)	0.00060	1.990	0.00030	0.017	YES	Perpendicularity Tolerance Met?	YES
END 2							
Diameter 1, in	0.00040	1.990	0.00020	0.012	YES		
Diameter 2, in (rotated 90°)	0.00050	1.990	0.00025	0.014	YES		

Project Name: I-95 SB Bridge Over Webb Rd

Project Location: Waterville, ME

GTX #: 308852 Test Date: 10/1/2018

Tested By: cmh
Checked By: jsc

Boring ID: BB-WWR-103

Sample ID: R2
Depth, ft: 21.4-22

After cutting and grinding

After break

Project: Replace I-95 Bridges over Webb Rd

Location: Waterville, ME

Boring ID: BB-WWR-201 Sample Type: tube Tested By: ckg
Sample ID: 4D Test Date: 12/06/21 Checked By: jsc

Depth: 10-12 Test Id: 644201

Test Comment: ---

Visual Description: Moist, olive gray silty sand with gravel

Sample Comment: ---

Particle Size Analysis - ASTM D6913

% Cobble	% Gravel	% Sand	% Silt & Clay Size
_	15.7	35.6	48.7

Sieve Name	Sieve Size, mm	Percent Finer	Spec. Percent	Complies
1 inch	25.00	100		
3/4 inch	19.00	90		
1/2 inch	12.50	90		
3/8 inch	9.50	88		
#4	4.75	84		
#10	2.00	79		
#20	0.85	73		
#40	0.42	66		
#60	0.25	61		
#100	0.15	56		
#140	0.11	52		
#200	0.075	49		

<u>Coefficients</u>					
D ₈₅ = 5.3563 mm	$D_{30} = N/A$				
$D_{60} = 0.2348 \text{ mm}$	$D_{15} = N/A$				
D ₅₀ = 0.0854 mm	$D_{10} = N/A$				
$C_u = N/A$	$C_{c} = N/A$				

Project No:

GTX-314703

ASTM N/A

AASHTO Silty Soils (A-4 (0))

<u>Sample/Test Description</u> Sand/Gravel Particle Shape: ANGULAR

Sand/Gravel Hardness : HARD

Project:

Replace I-95 Bridges over Webb Rd Location: Waterville, ME

Boring ID: BB-WWR-202 Sample Type: tube Tested By: ckg Sample ID: 1DB Test Date: 12/06/21 Checked By: jsc

Test Id: Depth: 0-2 644202

Test Comment:

Visual Description: Moist, dark olive brown clay with sand

Sample Comment: contains glass

Particle Size Analysis - ASTM D6913

% Cobble	% Gravel	% Sand	% Silt & Clay Size
_	2.5	19.5	78.0

Sieve Name	Sieve Size, mm	Percent Finer	Spec. Percent	Complies
1/2 inch	12.50	100		
3/8 inch	9.50	98		
#4	4.75	98		
#10	2.00	95		
#20	0.85	91		
#40	0.42	88		
#60	0.25	86		
#100	0.15	83		
#140	0.11	81		
#200	0.075	78		

<u>Coefficients</u>						
D ₈₅ = 0.2164 mm	$D_{30} = N/A$					
$D_{60} = N/A$	$D_{15} = N/A$					
D ₅₀ = N/A	$D_{10} = N/A$					
$C_u = N/A$	$C_C = N/A$					

Project No:

GTX-314703

Classification <u>ASTM</u> N/A AASHTO Silty Soils (A-4 (0))

<u>Sample/Test Description</u> Sand/Gravel Particle Shape : ---

Project:

Replace I-95 Bridges over Webb Rd Location: Waterville, ME

Boring ID: BB-WWR-203 Sample Type: tube Tested By: ckg Sample ID: 2DB Test Date: 12/06/21 Checked By: jsc

Test Id: Depth: 644203

Test Comment:

Visual Description: Moist, olive gray clay with sand

Sample Comment:

Particle Size Analysis - ASTM D6913

% Cobble	% Gravel	% Sand	% Silt & Clay Size
_	12.2	17.1	70.7

Sieve Name	Sieve Size, mm	Percent Finer	Spec. Percent	Complies
3/4 inch	19.00	100		
1/2 inch	12.50	93		
3/8 inch	9.50	92		
#4	4.75	88		
#10	2.00	85		
#20	0.85	82		
#40	0.42	80		
#60	0.25	77		
#100	0.15	74		
#140	0.11	73		
#200	0.075	71		

<u>Coefficients</u>			
D ₈₅ = 2.0866 mm	$D_{30} = N/A$		
D ₆₀ = N/A	$D_{15} = N/A$		
$D_{50} = N/A$	$D_{10} = N/A$		
C _u =N/A	$C_c = N/A$		

Classification

Project No:

GTX-314703

<u>ASTM</u> N/A AASHTO Silty Soils (A-4 (0))

<u>Sample/Test Description</u> Sand/Gravel Particle Shape : ANGULAR

Sand/Gravel Hardness: HARD

Project:

Replace I-95 Bridges over Webb Rd

Location: Waterville, ME Project No:

Boring ID: BB-WWR-204 Sample Type: tube Tested By: ckg Sample ID: 3DB Test Date: 12/06/21 Checked By: jsc

Depth: 4-6 Test Id: 644204

Test Comment:

Moist, olive gray silty gravel with sand Visual Description:

Sample Comment:

Particle Size Analysis - ASTM D6913

% Cobble	% Gravel	% Sand	% Silt & Clay Size
_	44.7	32.3	23.0

Sieve Name	Sieve Size, mm	Percent Finer	Spec. Percent	Complies
1 inch	25.00	100		
3/4 inch	19.00	91		
1/2 inch	12.50	88		
3/8 inch	9.50	69		
#4	4.75	55		
#10	2.00	43		
#20	0.85	36		
#40	0.42	32		
#60	0.25	29		
#100	0.15	26		
#140	0.11	25		
#200	0.075	23		

<u>Coefficients</u>				
D ₈₅ =12.0061 mm	$D_{30} = 0.2849 \text{ mm}$			
D ₆₀ =5.9719 mm	$D_{15} = N/A$			
D ₅₀ = 3.2835 mm	$D_{10} = N/A$			
C _{II} =N/A	$C_C = N/A$			

GTX-314703

Classification <u>ASTM</u> N/A <u>AASHTO</u> Stone Fragments, Gravel and Sand (A-1-b(0))

<u>Sample/Test Description</u> Sand/Gravel Particle Shape: ANGULAR Sand/Gravel Hardness: HARD

Project:

Replace I-95 Bridges over Webb Rd Location: Waterville, ME

Boring ID: BB-WWR-205 Sample Type: tube Tested By: ckg Sample ID: 2D Test Date: 12/06/21 Checked By: jsc

Depth: Test Id: 644205

Test Comment:

Visual Description: Moist, olive gray clay

Sample Comment:

Particle Size Analysis - ASTM D6913

% Cobble	% Gravel	% Sand	% Silt & Clay Size
_	0.0	4.1	95.9

Sieve Name	Sieve Size, mm	Percent Finer	Spec. Percent	Complies
#4	4.75	100		
#10	2.00	100		
#20	0.85	99		
#40	0.42	99		
#60	0.25	98		
#100	0.15	97		
#140	0.11	97		
#200	0.075	96		

<u>Coefficients</u>			
$D_{85} = N/A$	$D_{30} = N/A$		
$D_{60} = N/A$	$D_{15} = N/A$		
D ₅₀ = N/A	$D_{10} = N/A$		
$C_u = N/A$	C _c =N/A		

Project No:

GTX-314703

Classification <u>ASTM</u> N/A

AASHTO Silty Soils (A-4 (0))

<u>Sample/Test Description</u> Sand/Gravel Particle Shape : ---

Project: Replace I-95 Bridges over Webb Rd

Location: Waterville, ME Project No:

Boring ID: BB-WWR-206 Sample Type: tube Tested By: ckg Sample ID: 2D Test Date: 12/06/21 Checked By: jsc

Depth: Test Id: 644206

Test Comment:

Visual Description: Moist, olive gray clay

Sample Comment:

Particle Size Analysis - ASTM D6913

% Cobble	% Gravel	% Sand	% Silt & Clay Size
_	0.0	3.9	96.1

Sieve Name	Sieve Size, mm	Percent Finer	Spec. Percent	Complies
#4	4.75	100		
#10	2.00	100		
#20	0.85	100		
#40	0.42	99		
#60	0.25	99		
#100	0.15	98		
#140	0.11	97		
#200	0.075	96		

<u>Coefficients</u>				
D ₈₅ = N/A	$D_{30} = N/A$			
$D_{60} = N/A$	$D_{15} = N/A$			
D ₅₀ = N/A	$D_{10} = N/A$			
$C_u = N/A$	C _c =N/A			

GTX-314703

Classification <u>ASTM</u> N/A AASHTO Silty Soils (A-4 (0))

<u>Sample/Test Description</u> Sand/Gravel Particle Shape : ---

Project:

Replace I-95 Bridges over Webb Rd Location: Waterville, ME

Boring ID: BB-WWR-207 Sample Type: tube Tested By: ckg Sample ID: 2D Test Date: 12/06/21 Checked By: jsc

Depth: Test Id: 644207

Test Comment:

Visual Description: Moist, olive gray clay with sand

Sample Comment:

Particle Size Analysis - ASTM D6913

ne	Sieve Size, mm Percen	t Finer Spec. Percent C	Complies	Coefficients	
	_	3.2	14.6	82.2	
	% Cobble	% Gravel	%Sand	% Silt & Clay Size	

Sieve Name	Sieve Size, mm	Percent Finer	Spec. Percent	Complies
1/2 inch	12.50	100		
3/8 inch	9.50	98		
#4	4.75	97		
#10	2.00	95		
#20	0.85	91		
#40	0.42	88		
#60	0.25	86		
#100	0.15	84		
#140	0.11	83		
#200	0.075	82		

	Coefficients
D ₈₅ = 0.1854 mm	$D_{30} = N/A$
D ₆₀ = N/A	$D_{15} = N/A$
D ₅₀ = N/A	$D_{10} = N/A$
$C_u = N/A$	$C_c = N/A$

Project No:

GTX-314703

Classification N/A

AASHTO Silty Soils (A-4 (0))

<u>ASTM</u>

<u>Sample/Test Description</u> Sand/Gravel Particle Shape : ANGULAR

Sand/Gravel Hardness: HARD

Project:

Replace I-95 Bridges over Webb Rd Location: Waterville, ME

Boring ID: BB-WWR-208 Sample Type: tube Tested By: ckg Sample ID: 2D Test Date: 12/06/21 Checked By: jsc

Depth: Test Id: 644208

Test Comment:

Visual Description: Moist, olive gray clay

Sample Comment:

Particle Size Analysis - ASTM D6913

% Cobble	% Gravel	% Sand	% Silt & Clay Size
_	0.7	9.2	90.1

Sieve Name	Sieve Size, mm	Percent Finer	Spec. Percent	Complies
3/8 inch	9.50	100		
#4	4.75	99		
#10	2.00	99		
#20	0.85	98		
#40	0.42	97		
#60	0.25	96		
#100	0.15	94		
#140	0.11	92		
#200	0.075	90		

<u>Coefficients</u>		
$D_{85} = N/A$	$D_{30} = N/A$	
$D_{60} = N/A$	$D_{15} = N/A$	
D ₅₀ = N/A	$D_{10} = N/A$	
$C_u = N/A$	C _c =N/A	

Project No:

GTX-314703

Classification N/A

AASHTO Silty Soils (A-4 (0))

<u>ASTM</u>

<u>Sample/Test Description</u> Sand/Gravel Particle Shape : ---

Project: Replace I-95 Bridges over Webb Rd

Location: Waterville, ME

Boring ID: BB-WWR-209 Sample Type: tube Tested By: ckg Sample ID: 2D Test Date: 12/06/21 Checked By: jsc

Test Id: Depth: 644209

Test Comment:

Visual Description: Moist, olive gray clay

Sample Comment:

Particle Size Analysis - ASTM D6913

% Cobble	% Gravel	% Sand	% Silt & Clay Size
_	0.0	1.4	98.6

Sieve Name	Sieve Size, mm	Percent Finer	Spec. Percent	Complies
#4	4.75	100		
#10	2.00	100		
#20	0.85	100		
#40	0.42	100		
#60	0.25	100		
#100	0.15	99		
#140	0.11	99		
#200	0.075	99		

<u>Coefficients</u>		
$D_{85} = N/A$	$D_{30} = N/A$	
$D_{60} = N/A$	$D_{15} = N/A$	
D ₅₀ = N/A	$D_{10} = N/A$	
$C_u = N/A$	C _c =N/A	

Project No:

GTX-314703

Classification <u>ASTM</u> N/A

AASHTO Silty Soils (A-4 (0))

<u>Sample/Test Description</u> Sand/Gravel Particle Shape : ---

Project: Replace I-95 Bridges over Webb Rd

Location: Waterville, ME

Boring ID: BB-WWR-210 Sample Type: tube Tested By: ckg Sample ID: 2D Test Date: 12/06/21 Checked By: jsc

Depth: Test Id: 644210

Test Comment:

Visual Description: Moist, olive gray clay Sample Comment: contains glass

Particle Size Analysis - ASTM D6913

% Cobble	% Gravel	% Sand	% Silt & Clay Size
_	0.0	3.8	96.2

Sieve Name	Sieve Size, mm	Percent Finer	Spec. Percent	Complies
#4	4.75	100		
#10	2.00	100		
#20	0.85	100		
#40	0.42	99		
#60	0.25	99		
#100	0.15	98		
#140	0.11	97		
#200	0.075	96		

<u>Coefficients</u>		
D ₈₅ = N/A	$D_{30} = N/A$	
$D_{60} = N/A$	$D_{15} = N/A$	
D ₅₀ = N/A	$D_{10} = N/A$	
C _u =N/A	C _c =N/A	

Project No:

GTX-314703

Classification <u>ASTM</u> N/A AASHTO Silty Soils (A-4 (0))

<u>Sample/Test Description</u> Sand/Gravel Particle Shape : ---

APPENDIX D

Historic Bridge Drawings

SOUTHBOUND ado

Service of the servic e zew 1/0/1 *** *** Sans となると # ### 9 ---CAN A 本の大 €,00×1,22 € 1:25 ## £ 11 £ 15

PER MILITAL EL 219

西亚州多州夏州。 STOREST STATES OF STATES STATE £1.220.00 Bet No. 2 TO THE RESIDENCE OF THE PROPERTY OF THE PROPER

S 12 STA 825-08.65 ć, 52 1/1/4 Ġ 10 P 2 Bress

PIPE CONNECTIONS

GROOVE END COMBINATION

For 30" to 72", inclusive, diameter connection between concrete and metal pipe

"C'' = 17" min, for sizes 30" to 48" incl. "C'' = 23" min, for sizes over 48"

Asphalt coated corrugated metal pipe shall conform to the latest standard specifications

REINFORCED CONC

For 12" to 24", inclusive between concreted to the concreted to the concreted to the concreted to the concrete to the concreted to the concrete to the concret

Reinforced cor conform to the specifications

APPENDIX E

Geotechnical Design Calculations

HAL	CALCULATIONS	File No.	132212-004
AL		Sheet	1 of 12
Client	McFarland Johnson	Date	10-Mar-22
Project	I-95 Bridges Over Webb Road - WIN 21900.01 & WIN 21894.01	Computed by	JAD/TPJ
Subject	Seismic Site Class Evaluation	Checked by	MMB

PROBLEM STATEMENT & OBJECTIVE

Determine the Seismic Site Class using available subsurface SPT N information.

EXECUTIVE SUMMARY

Based on the subsurface conditions encountered at the eight test borings near the proposed substructures (BB-WWR-101 through BB-WWR-104 and BB-WWR-201 through BB-WWR-204), recommend a Seismic Site Class D.

REFERENCES

- 1. AASHTO LRFD Bridge Design Specifications, 9th edition, 2020
- 2. USGS Seismic Design Webpage, http://earthquake.usgs.gov

AVAILABLE INFORMATION

- 1. Boring logs dated 6-11-2018 to 6-13-2018 and 10-7-2021 to 10-12-2021 by New England Boring Contractors.
- 2. Other: Phase II Master Planning GDR and Geotech Report by others.
- 3. Elevations are measured in feet and reference the North American Vertical Datum of 1988 (NAVD 88).

ASSUMPTIONS

1. Where SPT N, Vs or su data was available to depths less than 100 ft, the subsurface profile was extended to 100 ft. The SPT N, Vs or su for the extended profile was then assumed based on the available information.

PROCEDURE

- 1. Check the site against the three categories of Site Class F (see attached Table 3.10.3.1-1), requiring site-specific ground motion response evaluation. If the site corresponds to any of these categories, classify the site as Site Class F and conduct a site-specific ground motion response evaluation.
- 2. Categorize the site using one of the following three methods (Method A, B, or C).

Method A

Average shear wave velocity for the upper 100 ft of the soil profile:

$$\overline{V}_{S} = \frac{\sum_{i=1}^{n} d_{i}}{\sum_{i=1}^{n} \frac{d_{i}}{V_{Si}}}$$

where

 V_{si} = shear wave velocity of *i* th soil (ft/s).

 d_i = thickness of *i* th soil layer (ft).

n = total number of distinctive soil layers in the upper 100 ft of the site profile.

i = any one of the layers between 1 and n.

HALE	CALCULATIONS	File No.	132212-004
ALI		Sheet	2 of 12
Client	McFarland Johnson	Date	10-Mar-22
Project	I-95 Bridges Over Webb Road - WIN 21900.01 & WIN 21894.01	Computed by	JAD/TPJ
Subject	Seismic Site Class Evaluation	Checked by	ММВ

PROCEDURE

Method B

Average standard penetration test (SPT) for the upper 100 ft of the soil profile:

$$\bar{N} = \frac{\sum_{i=1}^{n} d_i}{\sum_{i=1}^{n} \frac{d_i}{N_i}}$$

where

 N_i = standard penetration resistance as measured directly in the field, uncorrected blow count, of *i* th soil layer not to exceed 100 ft (blows/ft).

 d_i = thickness of *i* th soil layer (ft).

n = total number of distinctive soil layers in the upper 100 ft of the site profile.

i = any one of the layers between 1 and n.

Method C

Average standard penetration test (SPT) for the cohesionless layers in the upper 100 ft of the soil profile:

$$\bar{N}_{ch} = \frac{\sum_{i=1}^{m} d_i}{\sum_{i=1}^{m} \frac{d_i}{N_i}}$$

where

 N_i = standard penetration resistance as measured directly in the field, uncorrected blow count, of i th cohesionless soil layer (blows/ft).

 d_i = thickness of *i* th cohesionless soil layer (ft).

m = total number of distinctive cohesionless soil layers in the upper 100 ft of the site profile.

i = any one of the layers between 1 and m.

Average undrained shear strength for the cohesive layers in the upper 100 ft of the soil profile:

$$\bar{s}_u = \frac{\sum_{i=1}^k d_i}{\sum_{i=1}^k \frac{d_i}{S_{ui}}}$$

where

 s_{ui} = undrained shear strength of *i* th cohesive soil layer (psf), not to exceed 5000 psf

 d_i = thickness of *i* th cohesive soil layer (ft).

k = total number of distinctive cohesive soil layers in the upper 100 ft of the site profile.

i = any one of the layers between 1 and k.

Based on the available information, Method B will be used for the seismic Site Class evaluation.

HAL	CALCULATIONS	File No.	132212-004
AL		Sheet	3 of 12
Client	McFarland Johnson	Date	10-Mar-22
Project	I-95 Bridges Over Webb Road - WIN 21900.01 & WIN 21894.01	Computed by	JAD/TPJ
Subject	Seismic Site Class Evaluation	Checked by	MMB

SITE CLASS DEFINITIONS

(Table from AASHTO LRFD Bridge Design Specifications, 9th edition, 2020)

Table 3.10.3.1-1—Site Class Definitions

Site Class	Soil Type and Profile
A	Hard rock with measured shear wave velocity, $\overline{v}_s > 5,000 \text{ ft/s}$
В	Rock with 2,500 ft/sec $< \overline{v}_s < 5,000$ ft/s
С	Very dense soil and soil rock with 1,200 ft/sec $< \overline{v}_s < 2,500$ ft/s, or with either $\overline{N} > 50$ blows/ft, or $\overline{s}_u > 2.0$ ksf
D	Stiff soil with 600 ft/s $< \overline{v}_s < 1,200$ ft/s, or with either $15 < \overline{N} < 50$ blows/ft, or $1.0 < \overline{s}_u < 2.0$ ksf
Е	Soil profile with $\overline{v}_s < 600$ ft/s or with either $\overline{N} < 15$ blows/ft or $\overline{s}_u < 1.0$ ksf, or any profile with more than 10.0 ft of soft clay defined as soil with $PI > 20$, $w > 40$ percent and $\overline{s}_u < 0.5$ ksf
F	 Soils requiring site-specific evaluations, such as: Peats or highly organic clays (H > 10.0 ft of peat or highly organic clay where H = thickness of soil) Very high plasticity clays (H > 25.0 ft with PI > 75) Very thick soft/medium stiff clays (H > 120 ft)

Exceptions: Where the soil properties are not known in sufficient detail to determine the site class, a site investigation shall be undertaken sufficient to determine the site class. Site classes E or F should not be assumed unless the authority having jurisdiction determines that site classes E or F could be present at the site or in the event that site classes E or F are established by geotechnical data.

where:

average shear wave velocity for the upper 100 ft of the soil profile

 \bar{N} average Standard Penetration Test (SPT) blow count (blows/ft) (ASTM D1586) for the upper 100 ft of the soil profile

average undrained shear strength in ksf (ASTM D2166 or ASTM D2850) for the upper 100 ft of the soil

PIplasticity index (ASTM D4318) moisture content (ASTM D2216)

HAL	EYCALCULATIONS	File No.	132212-002
AL		Sheet	4 of 12
Client	McFarland Johnson	Date	10-Mar-22
Project	I-95 Bridges Over Webb Road - WIN 21900.01 & WIN 21894.01	Computed by	JAD/TPJ
Subject	Seismic Site Class Evaluation	Checked by	ММВ

Exploration ID: BB-WWR-101
Ground Surface El.: 227.6

Sample Number	Depth (ft)	Elevation (ft)	Description	d (ft)	SPT N (blows/ft)	d/N
1D	1	226.6	Fill	2.0	1	2.000
2D	3	224.6	Marine Deposits	2.0	12	0.167
3D	5	222.6	Marine Deposits/ Glacial Till	7.5	25	0.300
•	11.5	216.1	Top of Rock	88.5	100	0.885
<u> </u>	<u> </u>		Totals =	100.0		3.352

N-bar (blows/ft) = 29.8 Site Class = D

HAL	CALCULATIONS	File No.	132212-002
AL		Sheet	5 of 12
Client	McFarland Johnson	Date	10-Mar-22
Project	I-95 Bridges Over Webb Road - WIN 21900.01 & WIN 21894.01	Computed by	JAD/TPJ
Subject	Seismic Site Class Evaluation	Checked by	ММВ

Exploration ID: BB-WWR-102 (OW)
Ground Surface El.: 234.1

Sample Number	Depth (ft)	Elevation (ft)	Description	d (ft)	SPT N (blows/ft)	d/N
1D	1	233.1	Fill	2.0	11	0.182
2D	3	231.1	Marine Deposits	2.0	14	0.143
3D	5	229.1	Marine Deposits	1.5	38	0.039
4D	11	223.1	Glacial Till	9.5	28	0.339
5D	16	218.1	Glacial Till	5.0	83	0.060
6D	20.6	213.5	Glacial Till	5.0	82	0.061
7D	25.4	208.7	Glacial Till	0.8	100	0.008
8D	30.05	204.1	Weathered Rock	5.2	100	0.052
	31	203.1	Top of Rock	69.0	100	0.690
			Totals =	100.0		1.575

N-bar (blows/ft) = 63.5 Site Class = C

HAL	CALCULATIONS	File No.	132212-002
AL		Sheet	6 of 12
Client	McFarland Johnson	Date	10-Mar-22
Project	I-95 Bridges Over Webb Road - WIN 21900.01 & WIN 21894.01	Computed by	JAD/TPJ
Subject	Seismic Site Class Evaluation	Checked by	ММВ

Exploration ID: BB-WWR-201
Ground Surface El.: 229.6

Sample Number	Depth (ft)	Elevation (ft)	Description	d (ft)	SPT N (blows/ft)	d/N
1D	1	228.6	Topsoil	2.0	1	2.000
2D	3	226.6	Marine Deposits	2.0	17	0.118
3D	5	224.6	Glacial Till	6.0	23	0.261
4D	11	218.6	Glacial Till	5.0	15	0.333
5D	15.8	213.8	Glacial Till	1.6	64	0.025
	16.6	213	Top of Rock	83.4	100	0.834
			Totals =	100.0		3.571

N-bar (blows/ft) = 28.0 Site Class = D

HALI	CALCULATIONS	File No.	132212-002
ALI		Sheet	7 of 12
Client	McFarland Johnson	Date	10-Mar-22
Project	I-95 Bridges Over Webb Road - WIN 21900.01 & WIN 21894.01	Computed by	JAD/TPJ
Subject	Seismic Site Class Evaluation	Checked by	ММВ

Exploration ID: BB-WWR-202
Ground Surface El.: 226.0

Sample Number	Depth (ft)	Elevation (ft)	Description	d (ft)	SPT N (blows/ft)	d/N
1D	1	225	Topsoil	0.4	2	0.200
2D	3	223	Marine Deposits	4.0	14	0.286
3D	5	221	Glacial Till	1.8	16	0.113
4D	11	215	Glacial Till	8.9	37	0.241
5D	15	211	Weathered Rock	0.2	50	0.004
	15.3	210.7	Top of Rock	84.7	100	0.847
			Totals =	100.0		1.690

N-bar (blows/ft) = 59.2 Site Class = C

HALE	CALCULATIONS	File No.	132212-003
ALI		Sheet	8 of 12
Client	McFarland Johnson	Date	10-Mar-22
Project	I-95 Bridges Over Webb Road - WIN 21900.01 & WIN 21894.01	Computed by	JAD/TPJ
Subject	Seismic Site Class Evaluation	Checked by	ММВ

Exploration ID: BB-WWR-103
Ground Surface El.: 234.2

Sample Number	Depth (ft)	Elevation (ft)	Description	d (ft)	SPT N (blows/ft)	d/N
1D	1	233.2	Fill	1.0	2	0.500
2D	3	231.2	Marine Deposits	2.5	4	0.625
3D	5	229.2	Glacial Till	2.5	39	0.064
4D	7	227.2	Glacial Till	3.0	31	0.097
5D	10	224.2	Glacial Till	2.0	61	0.033
6D	11.7	222.5	Glacial Till/ Weathered Rock	1.3	86	0.015
	14.6	219.6	Top of Rock	87.7	100	0.877
	<u> </u>		Totals =	100.0		2.211

N-bar (blows/ft) = 45.2 Site Class = D

HALI	CALCULATIONS	File No.	132212-003
AL		Sheet	9 of 12
Client	McFarland Johnson	Date	10-Mar-22
Project	I-95 Bridges Over Webb Road - WIN 21900.01 & WIN 21894.01	Computed by	JAD/TPJ
Subject	Seismic Site Class Evaluation	Checked by	ММВ

Exploration ID: BB-WWR-104 (OW)
Ground Surface El.: 241.4

Sample Number	Depth (ft)	Elevation (ft)	Description	d (ft)	SPT N (blows/ft)	d/N
1D	1	240.4	Fill	2.0	6	0.333
2D	3	238.4	Glacial Till	2.0	22	0.091
3D	5	236.4	Glacial Till	2.0	17	0.118
4D	7	234.4	Glacial Till	4.0	12	0.333
5D	11	230.4	Glacial Till	4.5	21	0.214
6D	15.2	226.2	Weathered Rock	2.4	100	0.024
	16.9	224.5	Top of Rock	83.1	100	0.831
			Totals =	100.0		1.945

N-bar (blows/ft) = 51.4 Site Class = C

HAL	CALCULATIONS	File No.	132212-002
AL	57 110 0 11 11 11 11 11	Sheet	10 of 12
Client	McFarland Johnson	Date	10-Mar-22
Project	I-95 Bridges Over Webb Road - WIN 21900.01 & WIN 21894.01	Computed by	JAD/TPJ
Subject	Seismic Site Class Evaluation	Checked by	ММВ

Exploration ID: BB-WWR-203
Ground Surface El.: 237.7

Sample Number	Depth (ft)	Elevation (ft)	Description	d (ft)	SPT N (blows/ft)	d/N
			Topsoil/			
			Marine			
1D	1	236.7	Deposits	2.2	2	1.100
2D	3	234.7	Glacial Till	1.8	18	0.100
3D	5	232.7	Glacial Till	4.0	14	0.286
4D	11	226.7	Glacial Till	4.5	95	0.047
	12.5	225.2	Top of Rock	87.5	100	0.875
			Totals =	100.0		2.408

N-bar (blows/ft) = 41.5 Site Class = D

HAL	CALCULATIONS	File No.	132212-002
AL		Sheet	11 of 12
Client	McFarland Johnson	Date	10-Mar-22
Project	I-95 Bridges Over Webb Road - WIN 21900.01 & WIN 21894.01	Computed by	JAD/TPJ
Subject	Seismic Site Class Evaluation	Checked by	ММВ

Exploration ID: BB-WWR-204
Ground Surface El.: 233.3

Sample Number	Depth (ft)	Elevation (ft)	Description	d (ft)	SPT N (blows/ft)	d/N
1D	1	232.3	Topsoil	1.0	3	0.333
2D	3	230.3	Marine Deposits	2.0	24	0.083
3D	5	228.3	Glacial Till	9.0	27	0.333
4D	12.7	220.6	Glacial Till	1.4	50	0.028
RI	13.4	219.9	Top of Rock	86.6	100	0.866
			Totals =	100.0		1.644

N-bar (blows/ft) = 60.8 Site Class = C

HAL	CALCULATIONS	File No.	132212-004
AL		Sheet	12 of 12
Client	McFarland Johnson	Date	10-Mar-22
Project	I-95 Bridges Over Webb Road - WIN 21900.01 & WIN 21894.01	Computed by	JAD/TPJ
Subject	Seismic Site Class Evaluation	Checked by	ММВ

RESULTS SUMMARY

Boring Number	Parameter	Average Value	Site Class
BB-WWR-101	SPT-N	29.8	D
BB-WWR-102 (OW)	SPT-N	63.5	С
BB-WWR-201	SPT-N	28	D
BB-WWR-202	SPT-N	59.2	С
BB-WWR-103	SPT-N	45.2	D
BB-WWR-104 (OW)	SPT-N	51.4	С
BB-WWR-203	SPT-N	41.5	D
BB-WWR-204	SPT-N	60.8	С

CONCLUSIONS & RECOMMENDATIONS

- 1. Site Class D
- 2. Use USGS seismic data tool to determine seismic design parameters: Lat. 44.5248 deg. Long. -69.696 deg.

PGA=	0.077
FPGA=	1.6
Ss =	0.161
S1 =	0.046
Fa =	1.6
Fv =	2.4
Sds =	0.257
Sd1 =	0.111
As =	0.123

HALE	CALCULATIONS	File No.	132212-003
ALI	DRICH	Sheet	1 of 6
Client	McFarland Johnson	Date	22-Feb-2022
Project	I-95 Bridges Over Webb Road - WIN 21900.01 & WIN 21894.01	Computed by	JAD
Subject	Bearing Resistance of Glacial TIII for Abutment Footings	Checked by	ММВ

PROBLEM STATEMENT & OBJECTIVE

Calculate the Strength, Service and Extreme Event Limit bearing resistance of the proposed northbound and southbound, abutments 1 & 2, bridge crossing for Interstate 95 over Webb Road in Waterville, Maine

REFERENCES

1. AASHTO LRFD Bridge Design Specifications, 9th Edition, 2020.

AVAILABLE INFORMATION

- 1. Boring logs dated 6-11-2018 to 6-13-2018 and 10-6-2021 to 10-14-2021 by New England Boring Contractors, Inc., (monitored by Haley & Aldrich, Inc.).
- 2. Draft plan set prepared by McFarland Johnson dated 12/13/21.

ASSUMPTIONS

- 1. The vertical load eccentricity only applies in one direction (i.e., overturning moment only in one direction).
- 2. The maximum eccentricity assumed is B/3 based on AASHTO Section 10.6.3.3.
- 3. Fully saturated soils beneath footing and fully saturated soils above the footing to evaluate the highest groundwater table expected within the service life of the structure.
- 4. Subsurface conditions based on borings BB-WWR-101 through BB-WWR-104 and BB-WWR-201 through BB-WWR-204 (test boring logs in Appendix A).
- 5. Bottom of footings are 7 ft below ground surface.
- 6. Footing size considered: variable width x 54 ft long.
- 7. Footing will bear on undisturbed Glacial Till.
- 8. Soil properties for Glacial Till will be 130 pcf (unit weight) and 38 degrees (phi angle).
- 9. Soil properties for granular backfill will be 125 pcf (unit weight) and 32 degrees (phi angle).

HALE	CALCULATIONS	File No.:	132212-003
ALD	DRICH	Sheet:	2 of 6
Client:	McFarland Johnson	Date:	22-Feb-2022
Project:	I-95 Bridges Over Webb Road - WIN 21900.01 & WIN 21894.01	Computed by:	JAD
Subjects	Bearing Resistance of Glacial TIII for Abutment Footings	Checked by:	MMB

BACKGROUND INFORMATION FROM AASHTO LRFD

 $q_n = cN_{cm} + \gamma_{q}D_fN_{am}C_{wq} + 0.5\gamma_{f}BN_{m}C_{wq}$ (10.6.3.1.2a-1)

in which:

 $N_{cm} = N_c s_c i_c$ (10.6.3.1.2a-2)

 $N_{qm} = N_q s_q d_q i_q$ (10.6.3.1.2a-3)

 $N_{y}m = N_{y}s_{y}i_{y}$ (10.6.3.1.2a-4)

where:

cohesion, taken as undrained shear strength (ksf)

 N_c

cohesion term (undrained loading) bearing capacity factor as Table 10.6.3.1.2a-1 (dim)

surcharge (embedment) term (drained or N_a undrained loading) bearing capacity factor as specified in Table 10.6.3.1.2a-1 (dim)

 N_{2} unit weight (footing width) term (drained loading) bearing capacity factor as specified in Table 10.6.3.1.2a-1 (dim)

total (moist) unit weight of soil above the bearing depth of the footing (kcf)

total (moist) unit weight of soil below the bearing depth of the footing (kcf)

= footing embedment depth (ft) footing width (ft)

correction factors to account for the location of the groundwater table as specified in Table 10.6.3.1.2a-2 (dim)

 $s_c, s_\gamma, s_q =$ footing shape correction factors as specified in Table 10.6.3.1.2a-3 (dim)

depth correction factor to account for the shearing resistance along the failure surface passing through cohesionless material above the bearing elevation determined from Eq. 10.6.3.1.2a-10 (dim)

load inclination factors determined from Eqs. 10.6.3.1.2a-5 or 10.6.3.1.2a-6, and 10.6.3.1.2a-7 and 10.6.3.1.2a-8 (dim)

For $\phi_f = 0$:

 $i_c = 1 - (nH/cBLN_c)$ (10.6.3.1.2a-5)

For $\phi_f > 0$:

 $i_c = i_g - [(1 - i_g)/(N_g - 1)]$ (10.6.3.1.2a-6)

in which:

$$i_q = \left[1 - \frac{H}{(V + cBL \cot \phi_A)}\right]^q$$
 (10.6.3.1.2a-7)

$$i_{\gamma} = \left[1 - \frac{H}{V + cBL\cot\phi_f}\right]$$
 (10.6.3.1.2a-8)

$$n = [(2 + L/B)/(1 + L/B)]\cos^2\theta$$
 (10.6.3.1.2a-9)
+ $[(2 + B/L)/(1 + B/L)]\sin^2\theta$

where:

footing width (ft) footing length (ft)

unfactored horizontal load (kips)

unfactored vertical load (kips)

projected direction of load in the plane of the footing, measured from the side of length L (degrees)

10.6.3.1.2b—Considerations for Punching

If local or punching shear failure is possible, the nominal bearing resistance shall be estimated using reduced shear strength parameters c^* and ϕ^* in Eqs. 10.6.3.1.2b-1 and 10.6.3.1.2b-2. The reduced shear parameters may be taken as:

 $c^* = 0.67c$ (10.6.3.1.2b-1)

(10.6.3.1.2b-2) $\phi = \tan^{-1}(0.67 \tan \phi_f)$

where:

reduced effective stress soil cohesion for punching shear (ksf)

reduced effective stress soil friction angle for punching shear (degrees)

Table 10.6.3.1.2a-1—Bearing Capacity Factors N_c (Prandtl, 1921), N_a (Reissner, 1924), and N_{γ} (Vesic, 1975)

ф	N_c	N_q	N _Y	Φς	N_c	N_q	N _v
0	5.14	1.0	0.0	23	18.1	8.7	8.2
1	5.4	1.1	0.1	24	19.3	9.6	9.4
2	5.6	1.2	0.2	25	20.7	10.7	10.9
3	5.9	1.3	0.2	26	22.3	11.9	12.5
4	6.2	1.4	0.3	27	23.9	13.2	14.5
5	6.5	1.6	0.5	28	25.8	14.7	16.7
6	6.8	1.7	0.6	29	27.9	16.4	19.3
7	7.2	1.9	0.7	30	30.1	18.4	22.4
8	7.5	2.1	0.9	31	32.7	20.6	26.0
9	7.9	2.3	1.0	32	35.5	23.2	30.2
10	8.4	2.5	1.2	33	38.6	26.1	35.2
11	8.8	2.7	1.4	34	42.2	29.4	41.1
12	9.3	3.0	1.7	35	46.1	33.3	48.0
13	9.8	3.3	2.0	36	50.6	37.8	56.3
14	10.4	3.6	2.3	37	55.6	42.9	66.2
15	11.0	3.9	2.7	38	61.4	48.9	78.0
16	11.6	4.3	3.1	39	67.9	56.0	92.3
17	12.3	4.8	3.5	40	75.3	64.2	109.4
18	13.1	5.3	4.1	41	83.9	73.9	130.2
19	13.9	5.8	4.7	42	93.7	85.4	155.6
20	14.8	6.4	5.4	43	105.1	99.0	186.5
21	15.8	7.1	6.2	44	118.4	115.3	224.6
22	16.9	7.8	7.1	45	133.9	134.9	271.8

Table 10.6.3.1.2a-2—Coefficients C_{wq} and C_{wq} for Various Groundwater Depths

D_{w}	C_{wq}	Cwy
0.0	0.5	0.5
D_f	1.0	0.5
$1.5B + D_f$	1.0	1.0

Table 10.6.3.1.2a-3—Shape Correction Factors s_{ci} s_{γ} , s_{q}

Factor	Friction Angle	Cohesion Term (s _c)	Unit Weight Term (s _y)	Surcharge Term (s_q)
Shape Factors	$\phi_f = 0$	$1+\left(\frac{B}{5L}\right)$	1.0	1.0
S _c , S ₇ , S _q	$\phi_f > 0$	$1 + \left(\frac{B}{L}\right) \left(\frac{N_q}{N_s}\right)$	$1-0.4\left(\frac{B}{L}\right)$	$1 + \left(\frac{B}{L} \tan \phi_f\right)$

$$d_q = 1 + 2 \tan \phi_f (1 - \sin \phi_f)^2 \arctan \left(\frac{D_f}{B}\right)$$
(10.6.3.1.2a-10)

Eq. 10.6.3.1.2a-10 has been verified to cover a range of friction angle, ϕ_f , of 32 degrees to 42 degrees, and a range of D_f/B of 1 to 8. Depth correction factor values beyond this range have not been verified at this time.

Figure C10.6.3.1.2b-1—Modes of Bearing Capacity Failure for Footings in Sand

				CALCULATIONS	•			1111011011	132212 003
ALD	RICH			CALCULATIONS	•			Sheet:	3 of 6
Client:	McFarland Jo	hnson						Date:	22-Feb-2022
Project:	I-95 Bridges (Over Webb Road - WIN 21900.01 & WIN 21894.01					Computed by:	JAD	
Subject:	Bearing Resis	tance of Glad	ial TIII for Ab	utment Footing	S			Checked by:	MMB
	CALCULATIO	NS FOR STRE	NGTH LIMIT	STATE				•	
Inpu	ıt Parameters	Case 1	Case 2	Case 3	Case 4	Case 5	Case 6	Case 7	Case 8
	φ (deg.) =	38	38	38	38	38	38	38	38
	γ_q (pcf) =	125	125	125	125	125	125	125	125
	γ _f (pcf) =	130	130	130	130	130	130	130	130
	c (psf) =	0	0	0	0	0	0	0	0
	$D_f(ft) =$	7	7	7	7	7	7	7	7
	D_w (ft) =	0	0	0	0	0	0	0	0
	B (ft) =	14.0	16.0	18.0	20.0	22.0	24.0	26.0	28.6
	e _B (ft) =	4.67	5.33	6.00	6.67	7.33	8.00	8.67	9.53
	L (ft) =	54.0	54.0	54.0	54.0	54.0	54.0	54.0	54.0
	e _L (ft) =	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
l	RF or 1/FS =	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45
Depth	Corr., (Y/N)?	N	N	N	N	N	N	N	N
	ions & Output								
	$B_{eff} = B'(ft) =$	4.7	5.3	6.0	6.7	7.3	8.0	8.7	9.5
	$L_{eff} = L' (ft) =$	54.0	54.0	54.0	54.0	54.0	54.0	54.0	54.0
	$N_{\phi} = f(\phi) =$	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2
	$N_c = f_1(\phi) =$	61.3	61.3	61.3	61.3	61.3	61.3	61.3	61.3
	$N_q = f_2(\phi) =$	48.9	48.9	48.9	48.9	48.9	48.9	48.9	48.9
	$N\gamma = f_3(\phi) =$	78.0	78.0	78.0	78.0	78.0	78.0	78.0	78.0
	s _c =	1.07	1.08	1.09	1.10	1.11	1.12	1.13	1.14
	s _q =	1.07	1.08	1.09	1.10	1.11	1.12	1.13	1.14
	s _γ =	0.97	0.96	0.96	0.95	0.95	0.94	0.94	0.93
	$d_q =$	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
	C _{wq} =	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50
	$C_{w_{\gamma}} =$	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50
	$N_{cm} =$	65.53	66.13	66.73	67.34	67.94	68.54	69.15	69.93
	N _{qm} =	52.20	52.67	53.14	53.62	54.09	54.56	55.03	55.64
	$N_{\gamma m} =$	75.30	74.92	74.53	74.15	73.76	73.38	72.99	72.49
	or q _{ult} (psf) =	34,259	36,030	37,785	39,523	41,244	42,948	44,636	46,805
	or q _{ult} (ksf) =	34.3	36.0	37.8	39.5	41.2	42.9	44.6	46.8
RF×q _n or	q _{ult} /FS (ksf) =	15.4	16.2	17.0	17.8	18.6	19.3	20.1	21.1

File No.:

132212-003

Notes:

- 1. Refer to background page for definition of input parameters.
- 2. Analysis does not consider inclined load and inclined load adjustment factors, nor does it adjust for footings near slopes.
- 3. RF = resistance factor (e.g., as in AASHTO LRFD); FS is factor of safety if using allowable stress design.
- 4. e_B and e_L are the vertical load eccentricities in the B and L directions, respectively. Check code guidance for maximum vertical load eccentricities allowed.
- 5. B_{eff} and L_{eff} are the effective footing dimensions considering vertical load eccentricity and are equal to B-2e_B and L-2e_L, respectively.
- 6. $RF \times q_n$ and q_n/FS are the factored bearing resistance and the allowable bearing capacity, respectively.
- 7. Footing settlement should be checked separately.

HALE	Y	File No.:	132212-003	
ALD	RICH	Sheet:	4 of 6]
Client:	McFarland Johnson	Date:	22-Feb-2022	1
Project:	I-95 Bridges Over Webb Road - WIN 21900.01 & WIN 21894.01	Computed by:	JAD	
Subject:	Bearing Resistance of Glacial TIII for Abutment Footings	Checked by:	MMB	

Figure 1. Variable Footing Width Bearing Capacity

Notes:

1. These values are for the Strength Limit State using a resistance factor or 0.45.

\\haleyaldrich.com\share\CF\Projects\0132212\004\Calculations\Bearing Capacity\[2022-0125-HAI-Webb Road-Bearing Resistance-Till-Variable B.xlsx]Summary

HALE	CALCULATIONS	File No.	132212-003
ALI	DRICH	Sheet	5 of 6
Client	McFarland Johnson	Date	22-Feb-2022
Project	I-95 Bridges Over Webb Road - WIN 21900.01 & WIN 21894.01	Computed by	JAD
Subject	Bearing Resistance of Glacial TIII for Abutment Footings	Checked by	ММВ

BEARING RESISTANCE AT THE SERVICE LIMIT STATE

Northbound and Southbound Abutments 1 & 2:

AASHTO Section 10.6.2.6 - Bearing Resistance at the Service Limit State

The use of presumptive values shall be based on the knowledge of geological conditions at or near the structure site... These bearing resistances are settlement limited, e.g., 1.0-in., and apply only at the service limit state.'

Table C10.6.2.5.1-1

		Bearing Res	sistance (ksf)
			Recommended
Type of Bearing Material	Consistency in Place	Ordinary Range	Value of Use
Massive crystalline igneous and metamorphic rock:	Very hard, sound rock	120-200	160
granite, diorite, basalt, gneiss, thoroughly cemented			
conglomerate (sound condition allows minor cracks)			
Foliated metamorphic rock: slate, schist (sound	Hard sound rock	60-80	70
condition allows minor cracks)			
Sedimentary rock: hard cemented shales, siltstone,	Hard sound rock	30-50	40
sandstone, limestone without cavities			
Weathered or broken bedrock of any kind, except	Medium hard rock	16-24	20
highly argillaceous rock (shale)			
Compaction shale or other highly argillaceous rock	Medium hard rock	16-24	20
in sound condition			
Well-graded mixture of fine- and coarse-grained soil:	Very dense	16-24	20
glacial till, hardpan, boulder clay (GW-GC, GC, SC)			
Gravel, gravel-sand mixture, boulder-gravel	Very dense	12-20	14
mixtures (GW, GP, SW, SP)	Medium dense to dense	8-14	10
	Loose	4–12	6
Coarse to medium sand, and with little gravel (SW,	Very dense	8-12	8
SP)	Medium dense to dense	4–8	6
	Loose	2-6	3
Fine to medium sand, silty or clayey medium to	Very dense	6-10	6
coarse sand (SW, SM, SC)	Medium dense to dense	4–8	5
	Loose	2-4	3
Fine sand, silty or clayey medium to fine sand (SP,	Very dense	6-10	6
SM, SC)	Medium dense to dense	4–8	5
	Loose	2-4	3
Homogeneous inorganic clay, sandy or silty clay	Very dense	6-12	8
(CL, CH)	Medium dense to dense	2-6	4
	Loose	1–2	1
Inorganic silt, sandy or clayey silt, varved silt-clay-	Very stiff to hard	4–8	6
fine sand (ML, MH)	Medium stiff to stiff	2-6	3
	Soft	1–2	1

Presumptive Bearing at Service Limit State:

ksf

BEARING RESISTANCE AT THE EXTREME EVENT LIMIT STATE

11.5.8 - Resistance Factors for Extreme Event Limit state

Unless otherwise specified, all resistance factors shall be taken as 1.0 when investigating the extreme event limit state. For overall stability of the retaining wall when earthquake loading is included, a resistance factor, ϕ , of 0.9 shall be used. For bearing resistance, a resistance factor of 0.8 shall be used for gravity and semigravity walls and 0.9 for MSE Walls.

16

2. Use nominal resistance calculated for the Strength Limit State and apply a resistance factor of 0.8 from AASHTO LRFD 2020 Section 11.5.8 to obtain the factored resistance.

q_n	46.8	kst	(Strength Limit, B=28.6 ft)
RF	8.0		
q_R	37.4	ksf	(Extreme Event Limit)

ΗΛΙ	EX			File No.	132212-003
AL	ALDRICH		Sheet	6 of 6	
Client	McFarland Johnson			Date	22-Feb-2022
Project	I-95 Bridges Over Webb Road - WIN 21900.01 & WIN 21894.01			Computed by	JAD
Subject	Bearing Resistance of Glacial TIII for Abutment Footings			Checked by	ММВ
	CONCLUSIONS AND RECOMMENDATIONS				
	Northbound and Southbound Abutments 1 & 2:				
	Strength Limit State				
	The factored bearing resistance for the Strength Limit State is	21.1	ksf	for B = 28.6 ft	
	Service Limit State				
	The factored bearing resistance for the Service Limit State is	16.0	ksf	for 1 in. settlen	nent.
	Extreme Event Limit State				
	The factored bearing resistance for the Extreme Event Limit State is	37.4	ksf	For B = 28.6 ft	

HALE	CALCULATIONS	File No.	132212-004
ALD		Sheet	1 of 2
Client	McFarland Johnson	Date	10-Mar-22
Project	I-95 Bridges Over Webb Road - WIN 21900.01 & WIN 21894.01	Computed by	JAD
Subject	Sliding Resistance	Checked by	ММВ

PROBLEM STATEMENT AND OBJECTIVE

Determine the coefficient of friction between the footing and Glacial Till, resistance factor for sliding for the Strength Limit State, and resistance factor for sliding for the Extreme Event Limit State for the footing on Glacial Till.

EXECUTIVE SUMMARY

	<u>Glacial Till</u>
The coefficient of friction between the footing and subgrade is =	0.45
The resistance factor for sliding at the Strength Limit State is =	0.8
The resistance factor for sliding at the Extreme Event Limit State is =	1.0

REFERENCES

- 1. AASHTO LRFD Bridge Design Specifications, 9th edition, 2020
- 2. MaineDOT Bridge Design Guide, 2003 with interim revisions through June 2018.

AVAILABLE INFORMATION

1. Boring logs dated 6-11-2018 to 6-13-2018 and 10-7-2021 to 10-12-2021 by New England Boring Contractors.

ASSUMPTIONS

1. Abutment footing will bear on Glacial Till which, at the abutment elevations, consists of sand, gravel, and/or silt.

CALCULATIONS

Coefficient of Friction Between Concrete and Glacial Till

Nominal sliding resistance between the cast-in-place concrete footing and Glacial Till is dependent on the coefficient of friction $(\tan\delta)$ at the interface between the footing and Glacial Till.

Estimated footing-Glacial Till interface friction angle (δ):

24 - 29 deg., friction angle for mass concrete on clean fine to medium sand, silty medium to coars sand, silty or clayey gravel (AASHTO LRFD Table C3.11.5.3-1)

Recommended δ = 24 deg., friction angle between footing/seal Glacial Till

Recommended $tan\delta$ = 0.45 coefficient of friction

HALE	Y CALCULATIONS	File No.	132212-004
ALD	0.1100 11.110	Sheet	2 of 2
Client	McFarland Johnson	Date	10-Mar-22
Project	I-95 Bridges Over Webb Road - WIN 21900.01 & WIN 21894.01	Computed by	JAD
Subject	Seismic Site Class Evaluation	Checked by	MMB

Resistance Factors

Strength Limit State

AASHTO LRFD does not prescribe a sliding resistance factor for shallow foundations on Glacial Till. For cast-in-place concrete on sand, the sliding resistance factor is = **0.8** (Table 10.5.5.2.2-1)

Extreme Event Limit State

Section 10.5.5.3.3 of AASHTO LRFD prescribes a resistance factor of for the design of foundations against sliding at the Extreme Event Limit State.

HALEY	CALCULATIONS	File No.	132212-003
ALDRICH	CALCULATIONS	Sheet	1 of 2
Client	McFarland Johnson	Date	10-Mar-2022
Project	I-95 Bridges Over Webb Road - WIN 21900.01 & WIN 21894.01	Calculated by	JAD
Subject	Lateral Earth Pressure Coefficients for Northbound Abutments	Checked by	ММВ

Objective

-Calculate the active, at-rest, and passive lateral earth pressure coefficients to design the proposed I-95 Northbound bridge Abutment Nos. 1 & 2

Assumptions

-Abutments and wingwalls and their footings are backfilled with Granular Borrow based on H&A recomendations.

-Free draining retaining wall, no hydrostatic pressure, Soil Type 4 from Reference No. 2.

References

- 1. AASHTO LRFD Bridge Design Specifications, 9th edition, 2020
- 2. Maine DOT Bridge Design Guide (BDG), August 2003, with interim revisions through June 2018

EARTH PRESSURE COEFFICIENTS FOR PROPOSED ABUTMENT NO. 1 & NO. 2

Soil Properties and Geometry

designates input cell

125	pcf	Soil Type 4, BDG Table 3-3
32	degrees	Soil Type 4, BDG Table 3-3
0	degrees	
90	degrees	
24	degrees	Soil Type 4, BDG Table 3-3
	32 0 90	32 degrees 0 degrees 90 degrees

Static Active Lateral Earth Pressure Coefficient, K.

 $K_a = \sin^2(\Theta + \phi')/r(\sin^2\Theta\sin(\Theta - \delta))$ AASHTO LRFD Eq. 3.11.5.3-1

where $r = [1 + \sqrt{\sin(\phi + \delta)\sin(\phi - \beta)/(\sin(\Theta - \delta)\sin(\Theta + \beta))}]^2$ AASHTO LRFD Eq. 3.11.5.3-2

K_a = 0.27

At-Rest Lateral Earth Pressure Coefficient, K.

 $K_0 = 1-\sin\varphi$ AASHTO LRFD Eq. 3.11.5.2-1

K_o = 0.47

Passive Lateral Earth Pressure Coefficient, Kp

Rankine Theory

If the ratio of lateral abutment movement to abutment height (y/H) is less than 0.005, we recommend using Rankine theory to calculate the passive lateral earth pressure coefficient

 $K_{p,Rankine} = tan (45 + \phi'/2)^2$ $\phi=30 deg.$

K_{p,Rankine} = 3.00 Das, Principles of Geotechnical Engineering, 7th Ed., Eq. 13.22

Coulomb Theory

If the ratio of lateral abutment movement to abutment height (y/H) is greater than 0.005, we recommend using Coulomb theory to calculate the passive lateral earth pressure coefficient

 $K_p = \sin^2(\Theta - \phi')/r(\sin^2\Theta \sin(\Theta + \delta))$ $\phi = 30 \text{ deg.}$ BDG Section 3.6.6

where $\Gamma = [1 - V(\sin(\phi + \delta)\sin(\phi + \beta)/(\sin(\Theta + \delta)\sin(\Theta + \beta))]^2$ BDG Section 3.6.6

 $K_{p,Coulomb} = 7.33$

HALEY	CALCULATIONS	File No.	132212-003
ALDRICH		Sheet	2 of 2
Client	McFarland Johnson	Date	10-Mar-2022
Project	I-95 Bridges Over Webb Road - WIN 21900.01 & WIN 21894.01	Calculated by	JAD
Subject	Lateral Earth Pressure Coefficients for Southbound Abutments	Checked by	ММВ

Objective

-Calculate the active, at-rest, and passive lateral earth pressure coefficients to design the proposed I-95 Southbound bridge Abutment Nos. 1 & 2

Assumptions

-Abutments and wingwalls and their footings are backfilled with Granular Borrow based on H&A recomendations.

-Free draining retaining wall, no hydrostatic pressure, Soil Type 4 from Reference No. 2.

References

- 1. AASHTO LRFD Bridge Design Specifications, 9th edition, 2020
- 2. Maine DOT Bridge Design Guide (BDG), August 2003, with interim revisions through June 2018

EARTH PRESSURE COEFFICIENTS FOR PROPOSED ABUTMENT NO. 1 & NO. 2

Soil Properties and Geometry

designates input cell

Total Unit Weight, Y (pcf) =	125	pcf	Soil Type 4, BDG Table 3-3
Effective Friction Angle, φ' =	32	degrees	Soil Type 4, BDG Table 3-3
Backslope Angle, β =	0	degrees	
Backface of Wall Angle to Horizontal, Θ =	90	degrees	
Soil and Wall Friction Angle, δ =	24	degrees	Soil Type 4, BDG Table 3-3

Static Active Lateral Earth Pressure Coefficient, K.

 $K_a = \sin^2(\Theta + \phi')/r(\sin^2\Theta \sin(\Theta - \delta))$ AASHTO LRFD Eq. 3.11.5.3-1

where $r = [1 + \sqrt{\sin(\phi + \delta)\sin(\phi - \beta)/(\sin(\theta - \delta)\sin(\theta + \beta))}]^2$ AASHTO LRFD Eq. 3.11.5.3-2

K_a = 0.27

At-Rest Lateral Earth Pressure Coefficient, K.

 $K_0 = 1$ -sin ϕ AASHTO LRFD Eq. 3.11.5.2-1

K_o = 0.47

Passive Lateral Earth Pressure Coefficient, Kp

Rankine Theory

If the ratio of lateral abutment movement to abutment height (y/H) is less than 0.005, we recommend using Rankine theory to calculate the passive lateral earth pressure coefficient

 $K_{p,Rankine} = tan (45 + \phi'/2)^2$ $\phi=30 deg.$

K_{p.Rankine} = 3.00 Das, Principles of Geotechnical Engineering, 7th Ed., Eq. 13.22

Coulomb Theory

If the ratio of lateral abutment movement to abutment height (y/H) is greater than 0.005, we recommend using Coulomb theory to calculate the passive lateral earth pressure coefficient

 $K_p = \sin^2(\Theta - \Phi')/r(\sin^2\Theta \sin(\Theta + \delta))$ $\Phi = 30 \text{ deg.}$ BDG Section 3.6.6

where $r = [1 - \sqrt{\sin(\phi + \delta)\sin(\phi + \beta)/(\sin(\Theta + \delta)\sin(\Theta + \beta))}]^2$ BDG Section 3.6.6

 $K_{p,Coulomb} = 7.33$

HALI	CALCULATIONS	File No.:	132212-003
AL		Sheet:	1 of 3
Client:	McFarland Johnson	Date:	10-Mar-22
Project:	I-95 Bridges Over Webb Road - WIN 21900.01 & WIN 21894.01	Computed by:	JAD
Subject:	Frost Susceptibility and Maximum Depth of Frost Penetration	Checked by:	ММВ

OBJECTIVE:

Evaluate maximum depth of frost penetration based on soil and groundwater conditions, as well as geographic site location.

REFERENCES:

- 1. MaineDOT Bridge Design Guide, 2003 with interim revisions through June 2018.
- 1. Boring logs dated 6-11-2018 to 6-13-2018 by New England Boring Contractors for Phase I.
- 3. Draft plan set prepared by McFarland Johnson dated 3/9/22.

EVALUATION (PHASE I):

1. Gather relevant information from test borings performed near proposed bridge abutment locations:

STRUCTURE	STRUCTURE BEARING ELEVATION	TEST BORING NO./GS EL.	GROUND WATER ELEVATION	SAMPLE No. AND ELEVATION	AASHTO/ USCS	FINES CONTENT	MOISTURE CONDITION
ABUTMENT NO. 1 NORTHBOUND	El. 218.3 approximate	BB-WWR- 101 / 227.6	El. 226.6 at time of drilling	2DA El. 225.6 - 224.6	A-1-b(0)/SP	10.0	Wet
ABUTMENT	El. 218.3	BB-WWR-	El. 226.6 from observation	1D El. 234.1 - 232.6	A-4(0)/ML	44.9	Dry
NO. 2 NORTHBOUND	approximate	102 / 234.1	well data	2D El. 232.1 - 230.1	A-2-4(0)/SP- SM	13.6	Wet
ABUTMENT NO. 1	El. 226.8	BB-WWR-	El. 230.6 at time of	1DA El. 234.2 - 233.2	A-1- b(0)/SW- SM	12.2	Dry
SOUTHBOUND	approximate	103 / 234.2	drilling	2D El. 232.2 - 230.7	A-4(0)/ML	42.1	Wet
ABUTMENT	El. 226	BB-WWR-	El. 234.4 from	1D El. 241.4 - 239.4	A-4(0)/SM	42.9	Dry
NO. 2 SOUTHBOUND	approximate	104 / 241.4	observation well data	3D El. 237.4 - 235.4	A-4(0)/ML	68.7	Moist

Note: Ground water elevations summarized above were determined in the field and may have been influenced by the drilling process. Ground water elevations may vary throughout the year due to seasonal variations and precipitation events.

- 2. The abutments will bear on undisturbed Glacial Till and/or Weathered Bedrock. Assume the embankment fill consists of granular material.
- 3. From MaineDOT Bridge Design Guide Figure 5-1, the design freezing index for the site is approximately 1660 °F days based on site location, see Figure 5-1 presented on Page 3.
- 4. Estimate range in frost penetration using MaineDOT Bridge Design Guide Table 5-1 and the design freezing index above.
- 5. For coarse grained soil at the abutments, from Table 5-1, frost penetration depths vary between approximately 5.1 ft (w=30%) to 7.2 ft (w=10%).
- 6. For fine grained soil at the abutments, from Table 5-1, frost penetration depths vary between approximately 4.0 ft (w=30%) to 5.1 ft (w=10%).

Recommend 6.0 ft at the abutments.

HALI	CALCULATIONS	File No.:	132212-003
AL		Sheet:	2 of 3
Client:	McFarland Johnson	Date:	10-Mar-22
Project:	I-95 Bridges Over Webb Road - WIN 21900.01 & WIN 21894.01	Computed by:	JAD
Subject:	Frost Susceptibility and Maximum Depth of Frost Penetration	Checked by:	MMB

OBJECTIVE:

Evaluate maximum depth of frost penetration based on soil and groundwater conditions, as well as geographic site location.

REFERENCES:

- 1. MaineDOT Bridge Design Guide, 2003 with interim revisions through June 2018.
- 1. Boring logs dated 10-6-2021 to 10-14-2021 by New England Boring Contractors for Phase II.
- 3. Draft plan set prepared by McFarland Johnson dated 3/9/22.

EVALUATION (PHASE II):

1. Gather relevant information from test borings performed near proposed bridge abutment locations:

STRUCTURE	STRUCTURE BEARING ELEVATION	TEST BORING NO./GS EL.	GROUND WATER ELEVATION	SAMPLE No. AND ELEVATION	AASHTO/ USCS	FINES CONTENT	MOISTURE CONDITION
ABUTMENT NO. 1 NORTHBOUND	El. 218.3 approximate	BB-WWR- 201 / 229.6	El. 226.8 at time of drilling	4D El. 219.6 - 217.6	A-4(0)/ML	48.7	Wet
ABUTMENT NO. 2 NORTHBOUND	El. 218.3 approximate	BB-WWR- 202 / 226.0	El. 225.8 at time of drilling	1DB El. 225.6 - 224.0	A-4(0)/ML	78.0	Wet
ABUTMENT NO. 1 SOUTHBOUND	El. 226.8 approximate	BB-WWR- 203 / 237.7	El. 230.4 at time of drilling	2DB El. 235.5 - 233.7	A-4(0)/ML	70.7	Moist
ABUTMENT NO. 2 SOUTHBOUND	El. 226 approximate	BB-WWR- 204 / 233.3	El. 232.0 at time of drilling	3DA El. 228.3 - 227.3	A-1- b(0)/GM	23.0	Damp

Note: Ground water elevations summarized above were determined in the field and may have been influenced by the drilling process. Ground water elevations may vary throughout the year due to seasonal variations and precipitation events.

- 2. The abutments will bear on undisturbed Glacial Till and/or Weathered Bedrock. Assume the embankment fill consists of granular material.
- 3. From MaineDOT Bridge Design Guide Figure 5-1, the design freezing index for the site is approximately 1660 °F days based on site location, see Figure 5-1 presented on Page 3.
- 4. Estimate range in frost penetration using MaineDOT Bridge Design Guide Table 5-1 and the design freezing index above.
- 5. For coarse grained soil at the abutments, from Table 5-1, frost penetration depths vary between approximately 5.1 ft (w=30%) to 7.2 ft (w=10%).
- 6. For fine grained soil at the abutments, from Table 5-1, frost penetration depths vary between approximately 4.0 ft (w=30%) to 5.1 ft (w=10%).

Recommend 6.0 ft at the abutments.

HALE	CALCULATIONS	File No.:	132212-003
ALI		Sheet:	3 of 3
Client:	McFarland Johnson	Date:	10-Mar-22
Project:	I-95 Bridges Over Webb Road - WIN 21900.01 & WIN 21894.01	Computed by:	JAD
Subject:	Frost Susceptibility and Maximum Depth of Frost Penetration	Checked by:	MMB

Figure 5-1 Maine Design Freezing Index Map

Table 5-1 Depth of Frost Penetration

	rubio o i bopin o i rocci o monadon									
Design			Frost Pene	tration (in)					
Freezing	Co	Coarse Grained			Fine Grained					
Index	w=10%	w=20%	w=30%	w=10%	w=20%	w=30%				
1000	66.3	55.0	47.5	47.1	40.7	36.9				
1100	69.8	57.8	49.8	49.6	42.7	38.7				
1200	73.1	60.4	52.0	51.9	44.7	40.5				
1300	76.3	63.0	54.3	54.2	46.6	42.2				
1400	79.2	65.5	56.4	56.3	48.5	43.9				
1500	82.1	67.9	58.4	58.3	50.2	45.4				
1600	84.8	70.2	60.3	60.2	51.9	46.9				
1700	87.5	72.4	62.2	62.2	53.5	48.4				
1800	90.1	74.5	64.0	64.0	55.1	49.8				
1900	92.6	76.6	65.7	65.8	56.7	51.1				
2000	95.1	78.7	67.5	67.6	58.2	52.5				
2100	97.6	80.7	69.2	69.3	59.7	53.8				
2200	100.0	82.6	70.8	71.0	61.1	55.1				
2300	102.3	84.5	72.4	72.7	62.5	56.4				
2400	104.6	86.4	74.0	74.3	63.9	57.6				
2500	106.9	88.2	75.6	75.9	65.2	58.8				
2600	109.1	89.9	77.1	77.5	66.5	60.0				

HALE	CALCULATIONS	File No.:	132212-004
ALI		Sheet:	1 of 1
Client:	McFarland Johnson	Date:	11-Mar-2022
Project:	I-95 Bridges Over Webb Road - WIN 21900.01 & WIN 21894.01	Computed by:	JAD
Subject:	Global Stability	Checked by:	ММВ

PROBLEM STATEMENT AND OBJECTIVE

Calculate the global stability minimum factor of safety for the proposed bridge structures.

REFERENCES

- 1. AASHTO LRFD Bridge Design Specifications, 9th edition, 2020
- 2. Slide version 7.0 by RocScience.
- 3. MaineDOT Bridge Design Guide, 2003 with interim revisions through June 2018.

AVAILABLE INFORMATION

- 1. Draft plan set prepared by McFarland Johnson dated 12/13/21.
- 2. Boring logs dated 6-11-2018 to 6-13-2018 and 10-6-2021 to 10-14-2021 by New England Boring Contractors.

ASSUMPTIONS

- 1. Water level will be modeled at the bottom of the drainage ditch elevation in front of the structure and at the top of native soils behind the structure.
- 2. Seismic cases will have a seismic force of As/2 (0.123g/2) = 0.06 g based on the seismic site class calculations.
- 3. A 250 psf traffic surcharge will be modeled for breast walls, no surcharge will be modeled for wingwalls.
- 4. A 21,100 psf Strenth Limit bearing pressure will be modeled at the abutment footing. A 17,800 psf Strength Limit bearing pressure will be modeled at the wingwall footing.
- 5. A "worst case scenario" soil profile base on BB-WBB-102 is applied to all substructures.
- 6. The Northbound Abutment No. 2 and Northbound Abut. No. 2 East Wingwall are representative of the proposed Abutment and Wingwall structures.

SOIL PROPERTIES

Material	Unit Weight	Friction Angle	Undrained Shear
	(PCF)	(degrees)	Strength (PSF)
Granular Borrow	125	32	0
Marine Deposit (Sand)	120	32	0
Glacial Till (Sand)	130	38	0
Glacial Till (Silt-ML)	130	38	0
Glacial Till (Sandy Silt-ML)	130	38	0
Glacial Till (Gravel-GP-GM)	130	38	0
Weathered Bedrock	130	38	0
Bedrock	infinite strength		

RESULTS AND CONCLUSIONS

Structure	F.S.		
Structure	Static	Seismic	
NB Abut No. 2	2.2	2.1	
Abutment 2 Wingwall Line 1	2.1	2.1	
Abutment 2 Wingwall Line 2	2.1	2.0	

Based on AASHTO LRFD Section 11.6.2.3, an acceptable resistance factor for where the geotechnical parameters and subsurface stratigraphy are well defined is 0.75 (F.S. = 1/0.75 = 1.3).

Based on Maine DOT Bridge Design Guide Section 5.9.4, a minimum seismic factor of safety of 1.0 is acceptable for slope stability.

